Augmented Holomorphic Bundles
增强全纯束
基本信息
- 批准号:0072073
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2003-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0072073Steven B. BradlowHolomorphic bundles arise naturally in many different areas of geometry - indeed they lie at the intersection of algebraic, symplectic, and complex differential geometry. At the center of this intersection are sets of partial differential equations, such as the so-called Hermitian-Einstein and Vortex equations, which place constraints on the geometric features of the bundles. Their solutions carry information not only about the geometry of the bundles on which they are defined, but also about their topological and algebraic structure. In recent year it has been discovered how by adding certain extra structure to a holomorphic bundle, interesting new phenomena are revealed and importantapplications can result. The primary goals of this proposalinclude a fuller understanding of these `augmented bundles', the equations defined on them, their moduli spaces, and theirapplications.Holomorphic bundles fall within the class of geometric objectsknown as fiber bundles. In addition to their prominent place in modern geometry, fiber bundles play an important role withinmodern theoretical physics, where the influence of geometry canhardly be overstated. General relativity, electromagnetism and its extensions (known as gauge field theories), and string theorycould not be formulated without sophisticated geometric tools suchas vector and principal bundles.
DMS-0072073史蒂文B。布拉德洛全纯丛自然出现在许多不同领域的几何-事实上,他们躺在交叉的代数,辛,和复杂的微分几何。在这个交叉点的中心是一组偏微分方程,例如所谓的厄米-爱因斯坦方程和涡方程,它们对束的几何特征施加了约束。他们的解决方案携带的信息不仅对几何的丛,他们被定义,但也对他们的拓扑和代数结构。近年来,人们发现了如何通过给全纯丛增加某种额外结构,揭示了一些有趣的新现象,并得到了一些重要的应用。 这个命题的主要目标包括更全面地理解这些“增广丛”,定义在它们上面的方程,它们的模空间,以及它们的应用。全纯丛属于被称为纤维丛的几何对象的范畴。 除了在现代几何中的突出地位外,纤维束在现代理论物理中也起着重要的作用,几何的影响怎么强调都不过分。广义相对论、电磁学及其扩展(称为规范场论)和弦论,如果没有复杂的几何工具,如向量和主丛,就无法形成公式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Bradlow其他文献
Steven Bradlow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Bradlow', 18)}}的其他基金
Graduate Student Topology and Geometry Conference
研究生拓扑与几何会议
- 批准号:
1501039 - 财政年份:2015
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Program on Geometry and Quantization of Moduli Spaces
模空间的几何和量化程序
- 批准号:
1157721 - 财政年份:2012
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
RNMS: Geometric structures and representation varieties
RNMS:几何结构和表示种类
- 批准号:
1107452 - 财政年份:2011
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
EMSW21-MCTP: Research Experience for Graduate Students
EMSW21-MCTP:研究生的研究经验
- 批准号:
0838434 - 财政年份:2009
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
U.S.-Brazil Workshop on Geometry, Topology and Physics in Aguas De Lindoia, S.P. Brazil, June 30 - July 7, 1996
美国-巴西几何、拓扑和物理研讨会,1996 年 6 月 30 日至 7 月 7 日在巴西圣保罗阿瓜斯德林多亚举行
- 批准号:
9513279 - 财政年份:1996
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Vortices in Algebraic and Symplectic Geometry
数学科学:代数和辛几何中的涡旋
- 批准号:
9303545 - 财政年份:1993
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Gauge Theory and Holomorphic Bundles with Sections
数学科学:规范论和带截面的全纯丛
- 批准号:
9196204 - 财政年份:1991
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
相似国自然基金
Skew-holomorphic Jacobi形式的算术
- 批准号:10726030
- 批准年份:2007
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
The Geometry of Holomorphic Vector Bundles Studied with Singular Metrics
用奇异度量研究全纯向量丛的几何
- 批准号:
20K14319 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Moduli of holomorphic vector bundles over a Riemann surface
黎曼曲面上的全纯向量丛的模
- 批准号:
544920-2019 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Para-holomorphic vector bundles
拟全纯向量丛
- 批准号:
548295-2019 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
University Undergraduate Student Research Awards
Combinatorial techniques in symplectic geometry: moduli spaces of holomorphic vector bundles over curves
辛几何中的组合技术:曲线上全纯向量丛的模空间
- 批准号:
488168-2016 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Postdoctoral Fellowships
Combinatorial techniques in symplectic geometry: moduli spaces of holomorphic vector bundles over curves
辛几何中的组合技术:曲线上全纯向量丛的模空间
- 批准号:
488168-2016 - 财政年份:2017
- 资助金额:
$ 7.5万 - 项目类别:
Postdoctoral Fellowships
Differential geometry of holomorphic vector bundles with Rizza structures and it applications
Rizza结构全纯向量丛的微分几何及其应用
- 批准号:
16K05135 - 财政年份:2016
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Holomorphic vector bundles on Inoue surfaces
井上表面上的全纯向量丛
- 批准号:
480391-2015 - 财政年份:2015
- 资助金额:
$ 7.5万 - 项目类别:
University Undergraduate Student Research Awards
Generalized holomorphic line bundles on toric Fano surfaces
复曲面 Fano 曲面上的广义全纯线束
- 批准号:
480385-2015 - 财政年份:2015
- 资助金额:
$ 7.5万 - 项目类别:
University Undergraduate Student Research Awards
Geometry and Analysis of Moduli Spaces of Holomorphic Bundles
全纯丛模空间的几何与分析
- 批准号:
1406513 - 财政年份:2014
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Constructions of non-holomorphic bundles on the torus
环面上非全纯束的构造
- 批准号:
465109-2014 - 财政年份:2014
- 资助金额:
$ 7.5万 - 项目类别:
University Undergraduate Student Research Awards