Generalized holomorphic line bundles on toric Fano surfaces

复曲面 Fano 曲面上的广义全纯线束

基本信息

  • 批准号:
    480385-2015
  • 负责人:
  • 金额:
    $ 0.33万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    University Undergraduate Student Research Awards
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
无摘要- Aucun sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Borissov, Anton其他文献

Adaptation and validation of two autism-related measures of skills and quality of life in Ethiopia.
  • DOI:
    10.1177/13623613211050751
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Borissov, Anton;Bakolis, Ioannis;Tekola, Bethlehem;Kinfe, Mersha;Ceccarelli, Caterina;Girma, Fikirte;Abdurahman, Rehana;Zerihun, Tigist;Hanlon, Charlotte;Hoekstra, Rosa A.
  • 通讯作者:
    Hoekstra, Rosa A.
Field-theoretic functional renormalization group formalism for non-Fermi liquids and its application to the antiferromagnetic quantum critical metal in two dimensions
  • DOI:
    10.1016/j.aop.2023.169221
  • 发表时间:
    2023-02-02
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Borges, Francisco;Borissov, Anton;Lee, Sung-Sik
  • 通讯作者:
    Lee, Sung-Sik

Borissov, Anton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Borissov, Anton', 18)}}的其他基金

Applications of Condensed Matter Physics
凝聚态物理的应用
  • 批准号:
    495869-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Temperature measurement of laser cooled atoms
激光冷却原子的温度测量
  • 批准号:
    465186-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 0.33万
  • 项目类别:
    University Undergraduate Student Research Awards

相似国自然基金

Skew-holomorphic Jacobi形式的算术
  • 批准号:
    10726030
  • 批准年份:
    2007
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

HOLOMORPHIC DYNAMICS AND RELATED THEMES
全态动力学及相关主题
  • 批准号:
    2247613
  • 财政年份:
    2023
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Standard Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
  • 批准号:
    2109949
  • 财政年份:
    2023
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Standard Grant
有限無限次元における有界対称領域上の正則写像に関する研究
有限无限维有界对称域全纯映射研究
  • 批准号:
    23K03136
  • 财政年份:
    2023
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on holomorphic mappings of Riemann surfaces --- Geometry of spaces of continuations of Riemann surfaces and applications
黎曼曲面全纯映射研究——黎曼曲面延拓空间的几何及应用
  • 批准号:
    22K03356
  • 财政年份:
    2022
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Explicit Methods for non-holomorphic Hilbert Modular Forms
非全纯希尔伯特模形式的显式方法
  • 批准号:
    EP/V026321/1
  • 财政年份:
    2022
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Research Grant
CAREER: Symplectic and Holomorphic Convexity in 4-dimensions
职业:4 维辛凸性和全纯凸性
  • 批准号:
    2144363
  • 财政年份:
    2022
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Continuing Grant
Homotopy theory related to toric varieties and its related geomety
与环面簇相关的同伦理论及其相关几何
  • 批准号:
    22K03283
  • 财政年份:
    2022
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry and Dynamics of Holomorphic Geometric Structures
全纯几何结构的几何与动力学
  • 批准号:
    2203358
  • 财政年份:
    2022
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Continuing Grant
Holomorphic maps between Riemann surfaces
黎曼曲面之间的全纯映射
  • 批准号:
    21K03287
  • 财政年份:
    2021
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
  • 批准号:
    2104536
  • 财政年份:
    2021
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了