A Finite Difference Approach to Pseudospectral Methods

伪谱方法的有限差分法

基本信息

  • 批准号:
    0073048
  • 负责人:
  • 金额:
    $ 12.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-08-01 至 2004-07-31
  • 项目状态:
    已结题

项目摘要

Pseudospectral (PS) methods are high-accuracy alternatives to finitedifference (FD) and finite element methods (FEM) for the numerical solutionof PDEs. They are particularly effective for solving convection-dominatedequations over long times and in relatively simple geometries. Both thealgorithms themselves and the analysis of them have traditionally beenclosely tied to expansions in different classes of orthogonal functions.The recent book "A Practical Guide to Pseudospectral Methods" (by thepresent investigator) notes that a large body of generalizations,enhancements and insights can be gained by viewing PS methods instead asspecial cases of FD methods. Several such opportunities were explored underthe grant DMS-9706916. Building on these experiences, we will now introduceradial basis functions (RBFs) as an additional component to be integratedwith PS schemes. Although computationally quite costly, the spectralaccuracy of RBFs, combined with their extreme geometric flexibility, wouldseem to make them ideally suited to complement PS methods in the vicinityof irregular boundaries. To realize this requires much research regardingthe basic features of RBF approximations, as well as research on issuesrelated to interfacing them with PS and FD methods. Pseudospectral (PS) methods were first proposed in the early 1970's (inconnection with meteorology and turbulence modeling). They have since beenshown to be extraordinary effective for high-accuracy calculations innumerous other fields, such as computational electromagnetics and nonlinearwaves. Strategically important application areas include simulating theradar scattering from airplanes, the electrical interference betweencomponents on computer chips, and the transmissions of signals in opticalfibres. The main weakness with PS methods has been the difficulty to applythem in complex geometries. Some of this has been overcome in recent years(usually by splitting a complicated domain in simpler parts, and thenapplying some suitable computational means for coupling of the subdomains).A quite different and highly promising approach will be introduced and thenexplored under this grant. This involves combining 'classical' PS methodswith the geometrically extremely flexible approach known as radial basisfunctions (RBFs). This has never been attempted, and the research falls inthe 'high risk, high gain' category. Success is by no means certain, but ifit happens, it could have a major impact, particularly on computationalelectromagnetics in applications such as simulation of radar scattering /stealth properties of objects.
伪谱(PS)方法是有限差分(FD)和有限元(FEM)方法的高精度替代方法。它们对于长时间求解对流占优方程和相对简单的几何形状特别有效。无论是算法本身和他们的分析传统上都被封闭地绑在不同类的正交functions.The最近的书“一个实用指南伪谱方法”(由thempresent调查员)指出,大量的推广,增强和见解可以通过查看PS方法,而不是FD方法的特殊情况下获得。在DMS-9706916赠款下探索了几个这样的机会。在这些经验的基础上,我们现在将引入径向基函数(RBFs)作为与PS方案集成的附加组件。虽然计算成本很高,但径向基函数的光谱精度,加上它们极端的几何灵活性,似乎使它们非常适合在不规则边界附近补充PS方法。为了实现这一点,需要大量的研究,包括RBF近似的基本特征,以及与PS和FD方法接口的相关问题的研究。伪谱(PS)方法最早是在20世纪70年代初提出的(与气象学和湍流模拟有关)。他们已经被证明是非常有效的高精度计算在许多其他领域,如计算电磁学和非线性波。具有战略意义的重要应用领域包括模拟飞机的雷达散射、计算机芯片组件之间的电干扰以及光纤中的信号传输。PS方法的主要缺点是难以应用于复杂的几何形状。其中一些问题在最近几年已经被克服了(通常是通过将复杂的域分解为较简单的部分,然后应用一些合适的计算方法来耦合子域)。一种完全不同的、非常有前途的方法将在该资助下被介绍和探索。这涉及到结合“经典”PS方法与几何上非常灵活的方法称为径向基函数(RBFs)。这从来没有人尝试过,研究福尔斯属于“高风险,高收益”的范畴。成功是不确定的,但如果发生,它可能会产生重大影响,特别是在计算电磁学的应用,如模拟雷达散射/隐身性能的对象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bengt Fornberg其他文献

Discretization errors at free boundaries of the Grad-Schlüter-Shafranov equation
  • DOI:
    10.1007/bf01385804
  • 发表时间:
    1991-12-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Rita Meyer-Spasche;Bengt Fornberg
  • 通讯作者:
    Bengt Fornberg
A method for acceleration of the convergence of infinite series
  • DOI:
    10.1007/bf01933541
  • 发表时间:
    1969-03-01
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Anders Beckman;Bengt Fornberg;Arne Tengvald
  • 通讯作者:
    Arne Tengvald
Node subsampling for multilevel meshfree elliptic PDE solvers<span class="inline-figure"><img src="//ars.els-cdn.com/content/image/1-s2.0-S0898122124001305-fx001.jpg" width="17" height="19" /></span>
  • DOI:
    10.1016/j.camwa.2024.03.022
  • 发表时间:
    2024-06-15
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew P. Lawrence;Morten E. Nielsen;Bengt Fornberg
  • 通讯作者:
    Bengt Fornberg
A parallel-in-time approach for wave-type PDEs
  • DOI:
    10.1007/s00211-021-01197-5
  • 发表时间:
    2021-04-05
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Abe C. Ellison;Bengt Fornberg
  • 通讯作者:
    Bengt Fornberg
High-order numerical method for solving elliptic partial differential equations on unfitted node sets
非贴合节点集上求解椭圆型偏微分方程的高阶数值方法

Bengt Fornberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bengt Fornberg', 18)}}的其他基金

Radial Basis Functions
径向基函数
  • 批准号:
    0914647
  • 财政年份:
    2009
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CMG--Freedom from Coordinate Systems, and Spectral Accuracy with Local Refinement: Radial Basis Functions for Climate and Space-Weather Prediction
合作研究:CMG——不受坐标系影响,局部细化的光谱精度:气候和空间天气预报的径向基函数
  • 批准号:
    0620068
  • 财政年份:
    2006
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Radial Basis Functions
径向基函数
  • 批准号:
    0611681
  • 财政年份:
    2006
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Pseudospectral Methods and Radial Basis Functions
伪谱方法和径向基函数
  • 批准号:
    0309803
  • 财政年份:
    2003
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
A Finite Difference Approach to Pseudospectral Methods
伪谱方法的有限差分法
  • 批准号:
    9706916
  • 财政年份:
    1997
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant

相似海外基金

Integrability of nonlinear partial difference and functional equations: a singularity and entropy based approach
非线性偏差和函数方程的可积性:基于奇点和熵的方法
  • 批准号:
    22H01130
  • 财政年份:
    2022
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A sex difference approach to evaluating resilience as a predictor of healthspan in mice
评估弹性作为小鼠健康寿命预测因子的性别差异方法
  • 批准号:
    10166754
  • 财政年份:
    2017
  • 资助金额:
    $ 12.5万
  • 项目类别:
Empirical research on the Local Allocation Tax: An approach using a difference between budget and settled accounts
地方分配税的实证研究:利用预算与决算差异的方法
  • 批准号:
    16K03722
  • 财政年份:
    2016
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multifaceted approach to the pathogenesis and novel treatments for acute exacerbation of idiopathic pulmonary fibrosis based on the ethnic difference and neutrophilic transcription factor
基于种族差异和中性粒细胞转录因子的特发性肺纤维化急性加重发病机制和新疗法的多方面研究
  • 批准号:
    16K09541
  • 财政年份:
    2016
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Approach in Physiological optics and psychophysics to reveal universal color vision mechanism compensating for individual difference in the cone number ratio in the retina
生理光学和心理物理学方法揭示补偿视网膜视锥细胞数比率个体差异的通用色觉机制
  • 批准号:
    25245065
  • 财政年份:
    2013
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
An approach by individual difference data for color contribution of the visual perception.
一种通过个体差异数据来确定颜色对视觉感知的贡献的方法。
  • 批准号:
    24530906
  • 财政年份:
    2012
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Impedance matching control of beam based on finite difference approach
基于有限差分法的梁阻抗匹配控制
  • 批准号:
    21560253
  • 财政年份:
    2009
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spinoza, Kant and Deleuze on freedom and ethical difference: an immanent approach
斯宾诺莎、康德和德勒兹关于自由和伦理差异:一种内在的方法
  • 批准号:
    DP0771436
  • 财政年份:
    2007
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Discovery Projects
Multidimensional integrable systems, differential-difference equations and the symmetry approach
多维可积系统、微分差分方程和对称方法
  • 批准号:
    EP/C527747/2
  • 财政年份:
    2007
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Fellowship
Multidimensional integrable systems, differential-difference equations and the symmetry approach
多维可积系统、微分差分方程和对称方法
  • 批准号:
    EP/C527747/1
  • 财政年份:
    2006
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了