Multidimensional integrable systems, differential-difference equations and the symmetry approach
多维可积系统、微分差分方程和对称方法
基本信息
- 批准号:EP/C527747/2
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Integrable partial differential equations are of great interest in modern mathematics, where they have important connections with algebra and differential geometry, and in physics, where they describe many important physical models. Many concepts of modern mathematical physics such as solitons, instantons and quantum groups have their origin in theory of integrable systems.One of the most important and challenging problems in the theory of integrable systems is how to recognize when a given equation is integrable. This project is devoted to multidimensional and differential-difference polynomial integrable systems. The combination of the Perturbative Symmetry Approach and number theoretical methods is proposed for studying integrability of multidimensional and differential-difference equations as well as for obtaining complete classification results of integrable systems of this type.The aims of the proposed research are the following:I. Obtain a global (at arbitrary order) classification of integrable scalar and coupled polynomial homogeneous equations in 2+1 dimensions. II. Extend the perturbative symmetry approach to higher dimensional partial differential equations.III. Extend the symbolic method to differential-difference equations.IV. Obtain a global classification of integrable scalar and coupled differential-difference equations.AMS 2000 subject classification: 37K1 0, 37K35
可积偏微分方程在现代数学和物理学中有着重要的意义,在现代数学中,它们与代数和微分几何有着重要的联系,在物理学中,它们描述了许多重要的物理模型。现代数学物理中的许多概念,如孤子、瞬子、量子群等都起源于可积系统理论,而可积系统理论中最重要也是最具挑战性的问题之一就是如何识别一个给定的方程何时可积。这个项目致力于多维和微分-差分多项式可积系统。本文提出用摄动对称方法和数论方法相结合的方法来研究多维微分差分方程的可积性,并得到这类可积系统的完全分类结果。得到2+1维可积标量和耦合多项式齐次方程的全局(任意阶)分类。二.将扰动对称方法推广到高维偏微分方程.将符号方法推广到微分-差分方程.获得可积标量方程和耦合微分差分方程的整体分类。AMS 2000主题分类:37 K1 0,37 K35
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vladimir Novikov其他文献
Integrability of Nonabelian Differential–Difference Equations: The Symmetry Approach
- DOI:
10.1007/s00220-024-05182-5 - 发表时间:
2024-12-10 - 期刊:
- 影响因子:2.600
- 作者:
Vladimir Novikov;Jing Ping Wang - 通讯作者:
Jing Ping Wang
Vladimir Novikov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vladimir Novikov', 18)}}的其他基金
Multidimensional integrable systems, differential-difference equations and the symmetry approach
多维可积系统、微分差分方程和对称方法
- 批准号:
EP/C527747/1 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Fellowship
相似海外基金
PRIMES: Matroids, Polyhedral Geometry, and Integrable Systems
PRIMES:拟阵、多面体几何和可积系统
- 批准号:
2332342 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Well-posedness and Long-time Behavior of Dispersive Integrable Systems
色散可积系统的适定性和长期行为
- 批准号:
2348018 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Algebraic Geometry of Hitchin Integrable Systems and Beyond
希钦可积系统及其他代数几何
- 批准号:
2301474 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Differential geometry and integrable systems: exploiting new links
微分几何和可积系统:利用新的联系
- 批准号:
23H00083 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Discrete differential geometry, Lie sphere geometry, discrete surfaces theory, surface representations
离散微分几何、李球几何、离散曲面理论、曲面表示
- 批准号:
22KF0255 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Conference: Red Raider Mini-Symposium on Differential Geometry, Integrable Systems, and Applications
会议:Red Raider 微分几何、可积系统及应用小型研讨会
- 批准号:
2301994 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Finite Dimensional Integrable Systems 2023
会议:有限维可积系统 2023
- 批准号:
2308659 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Quantum groups, integrable systems and dualities
量子群、可积系统和对偶性
- 批准号:
2302661 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Algebraic Geometry and Integrable Systems -- Moduli theory and Equations of Painleve type
代数几何与可积系统——模理论与Painleve型方程
- 批准号:
22H00094 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Conference: Finite Dimensional Integrable Systems 2022
会议:有限维可积系统 2022
- 批准号:
2221910 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant