Random Matrices in Wireless Communication
无线通信中的随机矩阵
基本信息
- 批准号:0074277
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-15 至 2004-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Despite very strong economic incentives to approach the information theoretic limits of wireless channels, the state-of-the-art (typified by second generation cellular wireless)remains far from an efficient utilization of spectrum and power resources. Wireless channels are known to be particularly challenging from the standpoint of analysis of fundamental limits. Fading, multiuser interference, and the space-distributed nature of wireless pose considerable difficulties. Relevant simple canonical models and theappreciation of the right mathematical tools are only emerging recently. The focus of this work is the investigation and application of a rich body of mathematical results that play a pivotal role in the analysis of wireless communication channels of contemporary interest. Random matrices are ubiquitous in the study of wireless systems. For example, fading makes channel coefficients random and time-varying, spreading waveforms in nonorthogonal code-division multiple access systems are accurately modeled as being randomly selected, multiantenna transmitters/receivers in scattering environments give rise to channels described by random matrices.Both coded (Shannon capacity) and uncoded (bit-error-rate) performance turn out to be determined (in most cases) by the eigenvalues of certain random matrices. Frequently, those matrices are quite large as their dimensions grow linearly with parameters such as the number of users and signaling degrees of freedom.Many information theoretic problems for which numerical simulation is the only alternativewith finite size matrices find elegant deterministic solutions in the infinite-size limit.This project is a systematic study of the spectrum of random matrices arising in single- and multiuser communication and information theory. Its results should influence the choice of both multiaccess techniques and receiver designs, as well as guide the development of asymptotic random matrix theory withtechnologically relevant problems.
尽管有非常强的经济动机来接近无线信道的信息理论极限,但是现有技术(以第二代蜂窝无线为代表)仍然远远没有有效利用频谱和功率资源。 从分析基本限制的角度来看,无线信道是特别具有挑战性的。 衰落、多用户干扰和无线电的空间分布特性造成了相当大的困难。相关的简单规范模型和正确的数学工具的评价只是最近才出现的。 这项工作的重点是调查和应用的数学结果,发挥了关键作用,在分析无线通信信道的当代利益丰富的机构。 随机矩阵在无线系统的研究中无处不在。 例如,衰落使得信道系数随机且时变,非正交码分多址系统中的扩频波形被精确地建模为随机选择的,散射环境中的多天线发射机/接收机产生由随机矩阵描述的信道。(香农容量)和未编码(误比特率)的性能(在大多数情况下)由某些随机矩阵的特征值决定。 经常地,这些矩阵是相当大的,因为它们的维数随着参数(如用户数和信令自由度)线性增长。许多信息论问题,数值模拟是唯一的选择与有限大小的矩阵找到优雅的确定性解决方案在无限大小的限制。本项目是一个系统的研究随机矩阵的频谱产生在一个单一的,多用户通信和信息理论。 它的结果将影响多址技术和接收机设计的选择,以及指导渐近随机矩阵理论与技术相关问题的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergio Verdu其他文献
Sergio Verdu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sergio Verdu', 18)}}的其他基金
2016 IEEE International Symposium on Information Theory Student Travel Support
2016 IEEE国际信息论研讨会学生出行支持
- 批准号:
1611969 - 财政年份:2016
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research:Compressed databases for similarity queries: fundamental limits and algorithms
CIF:小型:协作研究:用于相似性查询的压缩数据库:基本限制和算法
- 批准号:
1319304 - 财政年份:2013
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
CIF: Small: Non-Asymptotic Information Theory
CIF:小:非渐近信息论
- 批准号:
1016625 - 财政年份:2010
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Collaborative Research: TF: Information Theory of Channels with Missing Observations
合作研究:TF:缺失观测值的通道信息论
- 批准号:
0728445 - 财政年份:2007
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Reliable Communication with Feedback: Coding Schemes and Fundamental Limits
可靠的反馈沟通:编码方案和基本限制
- 批准号:
0635154 - 财政年份:2006
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
ITR: Noiseless Data Compression Based on Error Correcting Codes
ITR:基于纠错码的无噪声数据压缩
- 批准号:
0312879 - 财政年份:2003
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Group Travel for U.S. Participants for 2000 IEEE International Symposium on Information Theory
2000年IEEE国际信息论研讨会美国参会者团体旅游
- 批准号:
9908665 - 财政年份:2000
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Travel Support to the 1990 IEEE Workshop on Information Theory
1990 年 IEEE 信息论研讨会的差旅支持
- 批准号:
9014965 - 财政年份:1990
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
相似海外基金
Reconfigurable Intelligent Surfaces 2.0 for 6G: Beyond Diagonal Phase Shift Matrices
适用于 6G 的可重构智能表面 2.0:超越对角相移矩阵
- 批准号:
EP/Y004086/1 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Research Grant
Designing synthetic matrices for enhanced organoid development: A step towards better disease understanding
设计合成基质以增强类器官发育:更好地了解疾病的一步
- 批准号:
MR/Y033760/1 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Research Grant
2024 Signal Transduction in Engineered Extracellular Matrices Gordon Research Conference and Seminar; Southern New Hampshire University, Manchester, New Hampshire; 20-26 July 2024
2024年工程细胞外基质信号转导戈登研究会议及研讨会;
- 批准号:
2414497 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Electrospun mucoadhesive matrices for polymersome-mediated mRNA vaccine delivery
用于聚合物囊泡介导的 mRNA 疫苗递送的电纺粘膜粘附基质
- 批准号:
BB/Y007514/1 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Research Grant
Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
- 批准号:
2306438 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Random Matrices and Functional Inequalities on Spaces of Graphs
图空间上的随机矩阵和函数不等式
- 批准号:
2331037 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Some topics in Analysis and Probability in Metric Measure Spaces, Random Matrices, and Diffusions
度量测度空间、随机矩阵和扩散中的分析和概率中的一些主题
- 批准号:
2247117 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Novel Bioprinted Neural Stem Cell-Embedded Hydrogel Matrices for Enhanced Treatment of Glioblastoma
新型生物打印神经干细胞嵌入水凝胶基质,用于增强胶质母细胞瘤的治疗
- 批准号:
10749330 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Asymptotics of Toeplitz determinants, soft Riemann-Hilbert problems and generalised Hilbert matrices (HilbertToeplitz)
Toeplitz 行列式的渐进性、软黎曼-希尔伯特问题和广义希尔伯特矩阵 (HilbertToeplitz)
- 批准号:
EP/X024555/1 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Fellowship
Random Matrices, Random Graphs, and Deep Neural Networks
随机矩阵、随机图和深度神经网络
- 批准号:
2331096 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant