RUI: Ultrafast THz Spectroscopy of Spin Dynamics in Semiconductors
RUI:半导体自旋动力学的超快太赫兹光谱
基本信息
- 批准号:0074622
- 负责人:
- 金额:$ 18.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-06-01 至 2003-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will use ultrafast THz spectroscopy to study spin excitations in narrow-gap semiconductor quantum wells. These systems exhibit a large spin-orbit coupling, permitting the spin-state of carriers to be controlled with an electric field such as that from a gate contact. These systems will be investigated with a time-resolved spectroscopic probe tuned to the energy scale of the spin-orbit interaction (1-5meV). The lifetimes and energy spectra of spin excitations will be determined for a number of quantum well structures. Such measurements are made possible by the spin-orbit interaction, which will allow optical generation of carriers in a well-defined spin-state, and optical probes of the evolution of spins. Ultrafast THz spectroscopy will also be used to perform pulsed-EPR measurements at terahertz frequencies on donor electrons in InAs. The successful performance of these experiments will demonstrate the applicability of this technique to a wide range of physical systems. Terahertz frequency generation on patterned semiconductor surfaces will also be investigated. It is expected that surface patterning will boost the efficiency of generation of optically pumped THz pulses from semiconductor surfaces by about one order of magnitude. Lastly, carrier lifetimes will be investigated in picosecond carrier-lifetime materials such as low-temperature grown GaAs and radiation damaged semiconductors. Undergraduate students will participate in this research which will be performed at Macalester College and the University of Minnesota. The project will also benefit from collaboration with an industrial partner. The students will thus also acquire research experience in a setting of a major research enterprise. %%%As advances in technology push the size of transistors towards atomic dimensions, their properties will be increasingly influenced by quantum mechanics. For this reason, scientists are exploring devices that rely on quantum phenomena for their function. One such promising area involves semiconductor devices in which an electron's spin, rather than its charge, is used to control the flow of electric current. At the present time the most promising systems for realizing such semiconductor spin-transport devices are thin layers of materials such as indium arsenide and indium antimonide. Realizing these new technologies requires, however, a detailed understanding of the behavior of electron spins in these systems at ultra-short time intervals. This research is devoted to an experimental investigation of the optical properties of indium arsenide and indium antimonide by means of infrared spectroscopy at a time resolution of one trillionth of a second. Such measurements will reveal how much energy is required to change the direction of the spin in these systems, and how long the spin remains in the newly oriented state. Additional experiments will be performed to demonstrate the feasibility of pulsed magnetic resonance spectroscopy at these ultra-short time scales. This research will be conducted at Macalester College as well as at the University of Minnesota. The project will also benefit from the participation of an industrial collaborator. Undergraduate students will be engaged in this research. They will thereby acquire skills and knowledge in a forefront area of condensed matter physics and materials science. They will be prepared for advanced studies with an appreciation for the needs of advanced technology and for entry into the scientific/technological workforce.
这个项目将使用超快太赫兹光谱来研究窄禁带半导体量子阱中的自旋激发。这些系统表现出很大的自旋-轨道耦合,使得载流子的自旋态可以通过一个电场来控制,比如来自栅极接触的电场。这些系统将用时间分辨光谱探测器调谐到自旋-轨道相互作用的能量尺度(1-5 meV)进行研究。自旋激发的寿命和能谱将被确定为一些量子井结构。这样的测量是通过自旋-轨道相互作用和自旋演化的光学探测器实现的,这将允许光学产生处于定义明确的自旋态的载流子。超快太赫兹光谱还将用于在太赫兹频率下对InAs中的施主电子进行脉冲EPR测量。这些实验的成功运行将证明该技术在广泛的物理系统中的适用性。还将研究在图案化半导体表面上产生太赫兹频率的问题。预计表面图案化将把从半导体表面产生光泵浦太赫兹脉冲的效率提高约一个数量级。最后,我们将研究皮秒载流子寿命材料,如低温生长的砷化镓和辐射损伤半导体。本科生将参与这项研究,该研究将在麦卡莱斯特学院和明尼苏达大学进行。该项目还将受益于与一个行业合作伙伴的合作。因此,学生还将在大型研究企业的背景下获得研究经验。随着技术的进步将晶体管的尺寸推向原子尺寸,它们的性能将越来越受到量子力学的影响。出于这个原因,科学家们正在探索依赖量子现象实现其功能的设备。其中一个很有希望的领域涉及半导体器件,在这种器件中,电子的自旋而不是电荷被用来控制电流的流动。目前,实现这种半导体自旋输运器件的最有前途的系统是薄层材料,如砷化铟和锑化铟。然而,要实现这些新技术,需要详细了解这些系统中超短时间间隔的电子自旋行为。本文利用红外光谱技术对砷化铟和锑化铟的光学性质进行了实验研究,其时间分辨率为万亿分之一秒。这样的测量将揭示在这些系统中需要多少能量来改变自旋的方向,以及自旋保持在新取向状态的时间。还将进行其他实验,以证明脉冲磁共振光谱在这些超短时间尺度上的可行性。这项研究将在麦卡莱斯特学院和明尼苏达大学进行。该项目还将受益于一位行业合作者的参与。本科生将参与这项研究。因此,他们将获得凝聚态物理和材料科学前沿领域的技能和知识。他们将为深造做好准备,了解先进技术的需要,并进入科学/技术工作队伍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Heyman其他文献
Amorphous carbon antireflective coatings in the 10 to 50 μm region of the far-IR
- DOI:
10.1557/jmr.1994.0396 - 发表时间:
2011-03-03 - 期刊:
- 影响因子:2.900
- 作者:
Serhat Metin;James H. Kaufman;David D. Saperstein;Campbell J. Scott;James Heyman;Eugene E. Haller - 通讯作者:
Eugene E. Haller
Some Problems of Current Interest Relating to Classification and Treatment of Uterine Carcinoma
- DOI:
10.1016/s0002-9378(15)30397-5 - 发表时间:
1955-01-01 - 期刊:
- 影响因子:
- 作者:
James Heyman - 通讯作者:
James Heyman
PET-CT scan timing after radical treatment for oropharyngeal squamous-cell carcinoma at Velindre: Adherence to NICE guidelines
- DOI:
10.1016/j.clon.2022.09.011 - 发表时间:
2022-11-01 - 期刊:
- 影响因子:
- 作者:
Fiona Williams;Nicholas Morley;Emma Wyatt-Haines;James Heyman;Thomas Rackley;Mererid Evans;Elin Evans;Richard Webster;Nachi Palaniappan - 通讯作者:
Nachi Palaniappan
James Heyman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Heyman', 18)}}的其他基金
MRI-R2: Acquisition of a High-Power Femtosecond Ti:Sapphire Laser for Ultrafast Terahertz Spectroscopy
MRI-R2:获取用于超快太赫兹光谱的高功率飞秒钛宝石激光器
- 批准号:
0959341 - 财政年份:2010
- 资助金额:
$ 18.92万 - 项目类别:
Standard Grant
RUI: Ultrafast Conductivity Measurements of Graphene Films
RUI:石墨烯薄膜的超快电导率测量
- 批准号:
1006065 - 财政年份:2010
- 资助金额:
$ 18.92万 - 项目类别:
Continuing Grant
RUI: Electronic Properties of Semiconductors from Ultrafast Terahertz Spectroscopy
RUI:超快太赫兹光谱的半导体电子特性
- 批准号:
0606181 - 财政年份:2006
- 资助金额:
$ 18.92万 - 项目类别:
Standard Grant
RUI: Ultrafast Terahertz Spectroscopy of Carrier Dynamics in Semiconductors
RUI:半导体载流子动力学的超快太赫兹光谱
- 批准号:
0317276 - 财政年份:2003
- 资助金额:
$ 18.92万 - 项目类别:
Standard Grant
Acquisition of a Magneto-Optical Cryostat for Terahertz Studies of Semiconductor Heterostructures
获取用于半导体异质结构太赫兹研究的磁光低温恒温器
- 批准号:
0215717 - 财政年份:2002
- 资助金额:
$ 18.92万 - 项目类别:
Standard Grant
MRI: Acquisition of a Short-pulse Ti:Sapphire Laser for Terahertz Studies of Semiconductor Heterostructures
MRI:获取短脉冲钛宝石激光器用于半导体异质结构的太赫兹研究
- 批准号:
0116323 - 财政年份:2001
- 资助金额:
$ 18.92万 - 项目类别:
Standard Grant
Microelectronics in the Undergraduate Physics Laboratory
本科生物理实验室中的微电子学
- 批准号:
9851627 - 财政年份:1998
- 资助金额:
$ 18.92万 - 项目类别:
Standard Grant
Optical Spectroscopy and Magnetic Resonance in UndergraduatePhysics
本科物理学中的光谱学和磁共振
- 批准号:
9552221 - 财政年份:1995
- 资助金额:
$ 18.92万 - 项目类别:
Standard Grant
相似国自然基金
基于Ultrafast-VPCR技术的半夏药材及其成药快速基因检测体系的建立以及应用
- 批准号:81973434
- 批准年份:2019
- 资助金额:54.0 万元
- 项目类别:面上项目
相似海外基金
THz frequency structures for particle accelerators: Realising ultrafast electron beam manipulation and diagnostics
粒子加速器的太赫兹频率结构:实现超快电子束操纵和诊断
- 批准号:
ST/Y510002/1 - 财政年份:2024
- 资助金额:
$ 18.92万 - 项目类别:
Research Grant
Probing Intermolecular Dynamics with Nonlinear Ultrafast THz Spectroscopy
用非线性超快太赫兹光谱探测分子间动力学
- 批准号:
2316042 - 财政年份:2023
- 资助金额:
$ 18.92万 - 项目类别:
Standard Grant
New Frontiers in Ultrafast High-Field Plasmonics, Nonlinear Nanoplasmonics, Plasmoelectronics, and THz Spinplasmonics
超快高场等离子体激元、非线性纳米等离子体激元、等离子体电子学和太赫兹自旋等离子体激元的新前沿
- 批准号:
RGPIN-2020-03999 - 财政年份:2022
- 资助金额:
$ 18.92万 - 项目类别:
Discovery Grants Program - Individual
New Frontiers in Ultrafast High-Field Plasmonics, Nonlinear Nanoplasmonics, Plasmoelectronics, and THz Spinplasmonics
超快高场等离子体激元、非线性纳米等离子体激元、等离子体电子学和太赫兹自旋等离子体激元的新前沿
- 批准号:
RGPIN-2020-03999 - 财政年份:2021
- 资助金额:
$ 18.92万 - 项目类别:
Discovery Grants Program - Individual
New Frontiers in Ultrafast High-Field Plasmonics, Nonlinear Nanoplasmonics, Plasmoelectronics, and THz Spinplasmonics
超快高场等离子体激元、非线性纳米等离子体激元、等离子体电子学和太赫兹自旋等离子体激元的新前沿
- 批准号:
RGPIN-2020-03999 - 财政年份:2020
- 资助金额:
$ 18.92万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast THz spectroscopy
超快太赫兹光谱
- 批准号:
553600-2020 - 财政年份:2020
- 资助金额:
$ 18.92万 - 项目类别:
University Undergraduate Student Research Awards
An Ultrafast THz Light Source for the Study of Correlated Materials at the Atomic Scale
用于研究原子尺度相关材料的超快太赫兹光源
- 批准号:
RTI-2017-00552 - 财政年份:2016
- 资助金额:
$ 18.92万 - 项目类别:
Research Tools and Instruments
Development of wavelength tuning type ultrafast THz switching by one-dimensional photonic crystal containing metamaterials
利用含有超材料的一维光子晶体开发波长调谐型超快太赫兹开关
- 批准号:
15K04697 - 财政年份:2015
- 资助金额:
$ 18.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ultrafast spin manipulation using the intense THz pulse
使用强太赫兹脉冲进行超快自旋操纵
- 批准号:
26390074 - 财政年份:2014
- 资助金额:
$ 18.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ultrafast THz- and Infrared-Spectroscopy of Strongly Bound Excitons in GaN, ZnO and Transition-Metal-Dichalcogenides
GaN、ZnO 和过渡金属二硫化物中强束缚激子的超快太赫兹和红外光谱
- 批准号:
252360477 - 财政年份:2014
- 资助金额:
$ 18.92万 - 项目类别:
Research Fellowships