Toward a 3-Dimensional View of Permeation at CFTR
CFTR 渗透的 3 维视图
基本信息
- 批准号:0077575
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-01 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ion channels are membrane proteins responsible for the passive movement of ions, and sometimes other substrates, across cell membranes. Channels function in various cell types, including epithelial cells where they regulate the flow of ions across membranes that separate major compartments in the body, and excitable cells where they transduce electrical signals across cell membranes. Ion channels are often the endpoint, or effector, of signal transduction pathways. The overall structure of a typical ion channel can be broken into two major domains -- portions that form the pathway for ion permeation by creating a "pore" through the membrane, and (usually separate) portions that serve to regulate the open/closed configuration of the pore by gating in response to an appropriate stimulus. This proposal concerns one type of channel -- one crucial to the processes of chloride secretion and reabsorption in epithelial cells. This channel, the CFTR protein, is the product of the gene defective in the inherited disease, cystic fibrosis. A variant of CFTR is also involved in modulation of membrane excitability in cardiac ventricular myocytes. The long-term goal of this project is to understand the mechanisms of conduction, specificity, and gating in ion channels and transporters, with an emphasis on anion channels. Compared to cation channels, the structural architecture of anion channels is poorly understood. For this project, the overall objective is to determine the mechanisms controlling permeation in CFTR. Goal #1 is to identify transmembrane (TM) helices that line the pore, by localization of binding sites for open-channel blockers. Goal #2 is to identify groups of amino acids that serve as determinants of anion selectivity. The proposed approach relies upon the use of molecular biological techniques (site-directed mutagenesis) combined with expression in Xenopus oocytes and quantitative biophysical assays. The working hypothesis is that the pore is lined by TM domains 5, 6, 11, and 12. To achieve these goals, whole-cell and single-channel currents will be measured to determine the kinetics of two structurally-distinct classes of pore-blocking molecules, and to determine whether their binding domains contribute to the permeation pathway. Structural elements that contribute to the architecture of the pore will be defined by comparing the ability of wildtype and mutant channels to interact with open-channel blockers. Previous studies from the principal investigator's laboratory have shown that blocker kinetics are highly sensitive to the structure of the pore. A region within TM6 has also been identified that is critical for discrimination between different anions. This region also appears to lie close to the binding sites for pore-blocking molecules. To accurately describe the structure of the pore, it is necessary to consider the contributions made from portions of the channel other than TM6. This project will be guided by a three-dimensional model of the pore, proposed in the application, which takes into account the experimental data for TM domains 5, 6, 11, and 12. This approach hypothesizes that multiple helical domains contribute both to the binding sites for drugs and to the selectivity domains of the channel. A specific subset of residues that may determine the biophysical features of permeation is proposed. Residues in TM6 and TM12 will be addressed initially. Testing the importance of these residues will allow the construction of a detailed map of the conduction pathway in CFTR. Basic mechanisms used for permeation are likely to be common between CFTR and other anion channels. Hence, it is likely that conclusions drawn from the study of this molecular model will be relevant to the understanding of permeation in other anion channels.
离子通道是膜蛋白,负责离子和有时其他底物跨细胞膜的被动移动。通道在各种细胞类型中起作用,包括上皮细胞,其中它们调节穿过膜的离子流动,所述膜将体内的主要隔室分开,以及可兴奋细胞,其中它们跨越细胞膜传递电信号。离子通道通常是信号转导途径的终点或效应器。典型的离子通道的整体结构可以分为两个主要区域--通过产生穿过膜的“孔”而形成离子渗透路径的部分,以及(通常是分开的)用于响应于适当的刺激通过门控来调节孔的开/闭构型的部分。这项提议涉及一种类型的通道--一种对上皮细胞中氯分泌和重吸收过程至关重要的通道。这种通道,CFTR蛋白,是遗传性疾病囊性纤维化中基因缺陷的产物。CFTR的一种变体也参与心室肌细胞膜兴奋性的调节。本计画的长期目标是了解离子通道和转运蛋白的传导、特异性和门控机制,重点是阴离子通道。与阳离子通道相比,对阴离子通道的结构体系了解甚少。本项目的总体目标是确定CFTR中控制渗透的机制。目标#1是通过定位开放通道阻断剂的结合位点来鉴定排列在孔中的跨膜(TM)螺旋。目标#2是确定作为阴离子选择性决定因素的氨基酸组。所提出的方法依赖于使用分子生物学技术(定点诱变)结合表达在非洲爪蟾卵母细胞和定量生物物理测定。工作假设是,孔内衬TM域5,6,11和12。为了实现这些目标,将测量全细胞和单通道电流,以确定两种结构不同的孔阻断分子的动力学,并确定其结合域是否有助于渗透途径。通过比较野生型和突变型通道与开放通道阻断剂相互作用的能力,定义有助于孔结构的结构元件。来自主要研究者实验室的先前研究已经表明,阻断剂动力学对孔的结构高度敏感。TM 6内的一个区域也已确定,这是关键的不同阴离子之间的歧视。该区域似乎也位于孔封闭分子的结合位点附近。为了准确地描述孔的结构,有必要考虑除TM 6之外的通道部分的贡献。该项目将由应用中提出的孔隙三维模型指导,该模型考虑了TM域5,6,11和12的实验数据。这种方法假设多个螺旋结构域有助于药物的结合位点和通道的选择性结构域。提出了一个特定的子集的残留物,可以确定渗透的生物物理特征。将首先解决TM 6和TM 12中的残留物。测试这些残基的重要性将允许构建CFTR传导通路的详细地图。用于渗透的基本机制可能在CFTR和其他阴离子通道之间是共同的。因此,从该分子模型的研究中得出的结论可能与理解其他阴离子通道中的渗透有关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nael McCarty其他文献
Applying an electrostatic cross-correlation to the CFTR-ATP interaction
将静电互相关应用于 CFTR-ATP 相互作用
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Alex Saad;M. Bolding;James Dee;R. Westafer;Douglas R. Denison;Nael McCarty;William D. Hunt - 通讯作者:
William D. Hunt
Nael McCarty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nael McCarty', 18)}}的其他基金
Collaborative research: Chemoreception of prey chemical defenses
合作研究:猎物化学防御的化学感受
- 批准号:
1354829 - 财政年份:2014
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Toward a 3-Dimensional View of Permeation at CFTR
CFTR 渗透的 3 维视图
- 批准号:
0224690 - 财政年份:2002
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Multi-view passive stereo for efficient three-dimensional (3D) scene reconstruction
用于高效三维 (3D) 场景重建的多视图被动立体
- 批准号:
545869-2020 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Postgraduate Scholarships - Doctoral
Multi-view passive stereo for efficient three-dimensional (3D) scene reconstruction
用于高效三维 (3D) 场景重建的多视图被动立体
- 批准号:
545869-2020 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Postgraduate Scholarships - Doctoral
Three-Dimensional (3D) Acoustofluidic Scanning Nanoscope with Super Resolution and Large Field of View
具有超分辨率和大视场的三维 (3D) 声流控扫描纳米镜
- 批准号:
10478216 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Three-Dimensional (3D) Acoustofluidic Scanning Nanoscope with Super Resolution and Large Field of View
具有超分辨率和大视场的三维 (3D) 声流控扫描纳米镜
- 批准号:
10278520 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Three-Dimensional (3D) Acoustofluidic Scanning Nanoscope with Super Resolution and Large Field of View
具有超分辨率和大视场的三维 (3D) 声流控扫描纳米镜
- 批准号:
10670925 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Stochastic Analysis on Infinite Dimensional Spaces from a Geometric View
从几何角度看无限维空间的随机分析
- 批准号:
20K03639 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: A Multi-Dimensional View of the Milky Way
合作研究:银河系的多维视角
- 批准号:
1909897 - 财政年份:2019
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: A Multi-Dimensional View of the Milky Way
合作研究:银河系的多维视角
- 批准号:
1909841 - 财政年份:2019
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Connection problems of hypergeometric functions from the view point of higher dimensional Erdelyi cycles and their intersection numbers
高维Erdelyi循环及其交数角度的超几何函数连接问题
- 批准号:
19K03517 - 财政年份:2019
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: A four-dimensional view of deformation in the Eastern Alaska Range - where did the slip on the Denali fault go?
合作研究:阿拉斯加东部山脉变形的四维视图——德纳利断层上的滑动去了哪里?
- 批准号:
1828737 - 财政年份:2018
- 资助金额:
$ 39万 - 项目类别:
Standard Grant














{{item.name}}会员




