Optimimizing Noise-based Enhancement of Speech Recognition by Cochlear Implant Patients

优化人工耳蜗植入患者基于噪声的语音识别增强功能

基本信息

  • 批准号:
    0085370
  • 负责人:
  • 金额:
    $ 28.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-11-01 至 2003-10-31
  • 项目状态:
    已结题

项目摘要

0085370CollinsIt is well established that cochlear implants restore some level of functional hearing to most deaf individuals. However, speech recognition abilities vary widely across subjects and the mechanisms responsible for this variability are poorly understood. One factor that may impede speech recognition by cochlear implant subjects is that electrically stimulated nerves respond with a much higher level of synchrony than what is normally observed in acoustically stimulated nerves. Recently, some researchers have suggested that adding noise to a speech signal may decrease the synchronicity of the neural response observed under electrical stimulation, and thus, might restore a more normal response pattern. By generating more natural patterns, it may be possible to improve speech recognition for cochlear implant patients. Preliminary theoretical results from our lab indicate that more normal neural response patterns can be induced when small amounts of additive noise are added to periodic electrical signals. In addition, preliminary experimental results, again from our lab, indicate that speech recognition may also be improved using this approach. In the literature, the phenomenon whereby additive noise, when presented at an optimal level, improves signal transmission in nonlinear systems is known as stochastic resonance (SR). The goal of this research is to investigate and optimize a novel speech processing approach for cochlear implant patients based on the theory of stochastic resonance. To date, SR research has focused on the addition of noise to a weak signal within the context of a nonlinear systems. This research will instead consider the theoretical basis for driving a complex system to respond in a more chaotic fashion, and thus better mimic the responses observed in the normal auditory system. A series of theoretical and laboratory experiments has been designed to address the fundamental role of additive noise under electrical stimulation. A computational model of the neural response to electrical stimulation will be employed to develop the theoretical results, and results will be verified in psychophysical as well as neurophysiological experiments. Although optimizing the additive noise process for weak signals under "normal" acoustic neural stimulation has been considered in traditional SR research, this issue has not been addressed for neural systems subject to electrical stimulation. The specific questions that are proposed involve both generating a SR phenomenon and optimizing the phenomenon under electrical stimulation of the auditory system. This work will form an important theoretical basis for driving the auditory system to respond in a more natural, albeit chaotic fashion. Construction of the computer models will improve understanding of the neural response driven by electrical stimulation and assist in the design of new electrical stimulation paradigms that improve the representation of speech within the profoundly impaired auditory system. A collaboration with a neurophysiologist will ensure that the theoretical predictions are validated in a human model via psychophysical experiments and in neurophysiological data. In addition, the interdisciplinary scope of this work will provide a unique venue for the training of biomedical engineers.
0085370柯林斯众所周知,人工耳蜗植入物可以恢复大多数聋人的一定程度的功能性听力。然而,语音识别能力在不同的学科之间差异很大,并且对这种差异性的机制知之甚少。 可能阻碍耳蜗植入受试者的语音识别的一个因素是,电刺激的神经以比在声刺激的神经中正常观察到的同步水平高得多的同步水平作出响应。 最近,一些研究人员提出,向语音信号中添加噪声可能会降低在电刺激下观察到的神经反应的同步性,因此可能会恢复更正常的反应模式。 通过生成更自然的模式,有可能改善人工耳蜗植入患者的语音识别。我们实验室的初步理论结果表明,当少量的加性噪声被添加到周期性电信号中时,可以诱导出更正常的神经反应模式。 此外,同样来自我们实验室的初步实验结果表明,使用这种方法也可以改进语音识别。 在文献中,当加性噪声以最佳水平呈现时,改善非线性系统中的信号传输的现象被称为随机共振(SR)。本研究的目的是探索和优化一种基于随机共振理论的新型人工耳蜗语音处理方法。到目前为止,SR研究的重点是在非线性系统的背景下将噪声添加到弱信号中。 这项研究将考虑驱动复杂系统以更混乱的方式做出反应的理论基础,从而更好地模仿正常听觉系统中观察到的反应。 一系列的理论和实验室实验已经被设计来解决电刺激下的加性噪声的基本作用。 将采用电刺激的神经反应的计算模型来开发理论结果,并将在心理物理学和神经生理学实验中验证结果。 虽然在传统的SR研究中已经考虑了在“正常”声神经刺激下对弱信号的加性噪声过程进行优化,但是对于受到电刺激的神经系统,这个问题还没有得到解决。 提出的具体问题涉及产生SR现象和优化听觉系统电刺激下的现象。这项工作将形成一个重要的理论基础,推动听觉系统以更自然的方式做出反应,尽管是混乱的方式。 计算机模型的构建将提高对电刺激驱动的神经反应的理解,并有助于设计新的电刺激范例,以改善深度受损的听觉系统内的语音表示。 与神经生理学家的合作将确保通过心理物理实验和神经生理数据在人类模型中验证理论预测。 此外,这项工作的跨学科范围将为生物医学工程师的培训提供一个独特的场所。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leslie Collins其他文献

Leslie Collins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leslie Collins', 18)}}的其他基金

Theme-Based Redesign of the ECE Undergraduate Curriculum at Duke University
杜克大学 ECE 本科课程基于主题的重新设计
  • 批准号:
    0431812
  • 财政年份:
    2004
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Standard Grant
Theme-based Redesign of the Duke ECE Curriculum
杜克大学幼儿教育课程基于主题的重新设计
  • 批准号:
    0343168
  • 财政年份:
    2003
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Standard Grant

相似国自然基金

新一代超声速客机起降阶段增升装置气动噪声产生机理及控制方法研究(NOISE)
  • 批准号:
    12261131502
  • 批准年份:
    2022
  • 资助金额:
    105.00 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

DL-based CT image formation with characterization and control of resolution and noise
基于深度学习的 CT 图像形成,具有分辨率和噪声的表征和控制
  • 批准号:
    10666105
  • 财政年份:
    2023
  • 资助金额:
    $ 28.34万
  • 项目类别:
Creation of low-noise quantum 3D imaging technique based on transport of intensity equation
基于强度传输方程的低噪声量子3D成像技术的创建
  • 批准号:
    23K17749
  • 财政年份:
    2023
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
The Realization of Next-Generation Integrated Millimeter-Wave Systems Based On Ultra-Low-Noise Frequency Synthesis Techniques
基于超低噪声频率合成技术的下一代集成毫米波系统的实现
  • 批准号:
    22KJ0659
  • 财政年份:
    2023
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of loss and noise models for fan design based on high fidelity simulations
基于高保真度仿真的风扇设计损耗和噪声模型的开发
  • 批准号:
    RGPIN-2020-05919
  • 财政年份:
    2022
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Discovery Grants Program - Individual
Low-noise biosensing based on flexible differential circuit technology
基于柔性差分电路技术的低噪声生物传感
  • 批准号:
    22H01940
  • 财政年份:
    2022
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Quantum spin noise in a spin-based quantum computer
基于自旋的量子计算机中的量子自旋噪声
  • 批准号:
    573731-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 28.34万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of loss and noise models for fan design based on high fidelity simulations
基于高保真度仿真的风扇设计损耗和噪声模型的开发
  • 批准号:
    RGPIN-2020-05919
  • 财政年份:
    2021
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Discovery Grants Program - Individual
Notched Noise Therapy for Suppression of Tinnitus: A Randomized Controlled Trial
抑制耳鸣的缺口噪声疗法:一​​项随机对照试验
  • 批准号:
    10543404
  • 财政年份:
    2021
  • 资助金额:
    $ 28.34万
  • 项目类别:
Development of noise-robust statistical anomaly detection procedures for condition-based maintenance
开发基于状态的维护的抗噪声统计异常检测程序
  • 批准号:
    21K14372
  • 财政年份:
    2021
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of traffic noise evaluation system based on multi-scale wave acoustic analysis using VR technology
利用VR技术开发基于多尺度波浪声学分析的交通噪声评价系统
  • 批准号:
    21K04321
  • 财政年份:
    2021
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了