Molecular Nanoelectronics: Simulation from Molecules to Circuits
分子纳米电子学:从分子到电路的模拟
基本信息
- 批准号:0085516
- 负责人:
- 金额:$ 87.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-09-01 至 2003-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of the proposed research is to establish a collaborative team of experts from the chemistry of molecular electronics, the physics of electronic conduction at the molecular scale, advanced electronic structure, transport properties and experimental agreement, and silicon device and circuits technology to address the challenges of electronics at the quantum scale. This will require modeling and simulation involving multiple length and energy scales, starting from atomic Hamiltonians and going to complex circuits. Leveraging advances in molecular self-assembly, interfacial control, and the use of scanning probes, we will examine molecular bridges between bulk contacts, and relate the general features observed in experiments to simulations which compute the Landauer conductance from the Green's function of the molecule coupled to bulk, metal leads. Very recent, interesting, and potentially useful, reversible switching characteristics that have been observed will be analyzed theoretically. The systems typically consist of hard contacts (semiconductors or metals) and soft molecules that may exhibit dynamic structure modification. The objectives of this multi-disciplinary, small group effort are: i) to understand the physical and electronic structure and vibronic interactions of molecular bridges between hard contacts, ii) to develop a theoretical understanding of the interesting nonlinear I-V characteristics of molecules that are now being observed and to relate them to the structure of the molecule, iii) to devise methods for extracting physics-based, circuit models from the Hamiltonian of molecular electronic devices and iv) to use this knowledge and the simulation tools developed to identify molecular structures that are promising from a device and circuits perspective.The development of an understanding of how to relate electronic device and circuit function to molecular structure is the key objective of the proposed research. Other important components and products of this work include: i) the development of a set of 'community codes' for molecular nanoelectronics that emphasize the structure/function relationship of molecular devices and that connect them to the macroscopic world of circuits and systems, ii) a methodology to allow a researcher to suggest a particular structure, electrodes, and interfacial linkages, predict the electrical performance of the device, and to extract a circuit model, iii) a unique software infrastructure, The Computational Electronics Hub, that will permit users to access and operate simulation tools through a WWW browser, iv) a set of courses that will be enriched and expanded by this multidisciplinary effort, v) close interactions with leading experimental efforts in academia (Reed at Yale) and industry, vi) a partnership with the NIST group to provide expertise in advanced molecular electronic structure methods, vii) collaboration with international centers, particularly the Central University of Venezuela, viii) A high-school level teaching module in the Materials World Modules program, and ix) close interactions with the Semiconductor Research Corporation and with individual semiconductor companies to bring ideas and approaches of self-assembled molecular electronics to the electronics industry.
拟议研究的目标是建立一个由分子电子化学,分子尺度电子传导物理学,先进电子结构,传输特性和实验协议以及硅器件和电路技术专家组成的合作团队,以应对量子尺度电子学的挑战。这将需要涉及多个长度和能量尺度的建模和仿真,从原子哈密顿开始,到复杂的电路。利用分子自组装,界面控制,和使用扫描探针的进步,我们将检查散装接触之间的分子桥,并在实验中观察到的一般功能,计算兰道尔电导从耦合到散装,金属铅的分子的绿色函数的模拟。最近,有趣的,和潜在的有用的,已经观察到的可逆开关特性将进行理论分析。该系统通常由硬接触(半导体或金属)和软分子,可能会表现出动态结构修改。这个多学科的小组工作的目标是:i)理解硬接触之间的分子桥的物理和电子结构以及振动相互作用,ii)发展对现在正在观察的分子的有趣的非线性I-V特性的理论理解,并将它们与分子的结构相关联,iii)设计用于提取基于物理的方法,从分子电子器件的哈密顿量中建立电路模型; iv)利用这些知识和开发的模拟工具从器件和电路的角度识别有前途的分子结构。这项工作的其他重要组成部分和产品包括:i)为分子纳米电子学开发一套“社区代码”,强调分子器件的结构/功能关系,并将它们连接到电路和系统的宏观世界,ii)允许研究人员提出特定结构、电极和界面连接的方法,预测器件的电性能,并提取电路模型,iii)一个独特的软件基础设施,计算电子枢纽,这将允许用户通过WWW浏览器访问和操作模拟工具,iv)一套课程,这将丰富和扩展这一多学科的努力,v)与学术界领先的实验努力密切互动(耶鲁大学里德分校)和工业界,六)与NIST集团合作,提供先进分子电子结构方法的专业知识,七)与国际中心,特别是委内瑞拉中央大学合作,viii)材料世界模块计划中的高中水平教学模块,ix)与半导体研究公司和个别半导体公司密切互动,为电子行业带来自组装分子电子学的想法和方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Lundstrom其他文献
Effective Mass Approach for n-MOSFETs on Arbitrarily Oriented Wafers
- DOI:
10.1007/s10825-004-7062-9 - 发表时间:
2004-10-01 - 期刊:
- 影响因子:2.500
- 作者:
Anisur Rahman;Mark Lundstrom;Avik W. Ghosh - 通讯作者:
Avik W. Ghosh
Monte Carlo Simulation of Carbon Nanotube Devices
- DOI:
10.1007/s10825-004-7071-8 - 发表时间:
2004-10-01 - 期刊:
- 影响因子:2.500
- 作者:
Sayed Hasan;Jing Guo;Mani Vaidyanathan;M. A. Alam;Mark Lundstrom - 通讯作者:
Mark Lundstrom
3D Electrostatics of Carbon Nanotube Field-Effect Transistors
- DOI:
10.1007/s10825-004-7061-x - 发表时间:
2004-10-01 - 期刊:
- 影响因子:2.500
- 作者:
Neophytos Neophytou;Mark Lundstrom;Jing Guo - 通讯作者:
Jing Guo
Mark Lundstrom的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Lundstrom', 18)}}的其他基金
Network for Computational Nanotechnology - NEEDS Node
计算纳米技术网络 - NEEDS 节点
- 批准号:
1227020 - 财政年份:2012
- 资助金额:
$ 87.36万 - 项目类别:
Cooperative Agreement
Challenges in Photovoltaic Science, Technology, and Manufacturing: A workshop on the role of theory, modeling, and simulation- to be held September 20-21, 2011 at Purdue Univ.
光伏科学、技术和制造的挑战:关于理论、建模和仿真的作用的研讨会 - 将于 2011 年 9 月 20 日至 21 日在普渡大学举行。
- 批准号:
1141255 - 财政年份:2011
- 资助金额:
$ 87.36万 - 项目类别:
Standard Grant
Collaborative Research: Energy Efficient Thermal Design of Heterogeneous System with Active Cooling
合作研究:主动冷却异构系统节能热设计
- 批准号:
1028667 - 财政年份:2010
- 资助金额:
$ 87.36万 - 项目类别:
Standard Grant
Network for Computational Nanotechnology
计算纳米技术网络
- 批准号:
0228390 - 财政年份:2002
- 资助金额:
$ 87.36万 - 项目类别:
Continuing Grant
DesCArtES: A Distributed Center for Advanced Electronics Simulation
DesCArtES:先进电子仿真的分布式中心
- 批准号:
9809520 - 财政年份:1998
- 资助金额:
$ 87.36万 - 项目类别:
Standard Grant
Designing Microelectronic Technologies through a Network- Based Simulation 'Hub'
通过基于网络的仿真“中心”设计微电子技术
- 批准号:
9700762 - 财政年份:1997
- 资助金额:
$ 87.36万 - 项目类别:
Standard Grant
Minority Carrier Transport in Heavily Doped GaAs
重掺杂 GaAs 中的少数载流子输运
- 批准号:
8901638 - 财政年份:1989
- 资助金额:
$ 87.36万 - 项目类别:
Continuing Grant
Research Initiation: Computer Modeling of Integrated-Circuit Devices and Fabrication Processes
研究启动:集成电路器件和制造工艺的计算机建模
- 批准号:
8105956 - 财政年份:1981
- 资助金额:
$ 87.36万 - 项目类别:
Standard Grant
相似海外基金
Programmable Ferroelectric Nanoelectronics for In-memory Computing
用于内存计算的可编程铁电纳米电子学
- 批准号:
DP240102137 - 财政年份:2024
- 资助金额:
$ 87.36万 - 项目类别:
Discovery Projects
FMRG: Bio: Manufacturing Ultra-High-Density DNA-Enabled Nanoelectronics Systems
FMRG:生物:制造超高密度 DNA 纳米电子系统
- 批准号:
2328217 - 财政年份:2023
- 资助金额:
$ 87.36万 - 项目类别:
Standard Grant
Collaborative Research: IRES Track I: US/France Multidisciplinary Collaboration in Nanoelectronics, Quantum Materials and Next-Generation Computing
合作研究:IRES 第一轨:美国/法国在纳米电子学、量子材料和下一代计算方面的多学科合作
- 批准号:
2246358 - 财政年份:2023
- 资助金额:
$ 87.36万 - 项目类别:
Standard Grant
Nanoelectronics to study exosome circuitry and their role in neuroregeneration
纳米电子学研究外泌体电路及其在神经再生中的作用
- 批准号:
10713428 - 财政年份:2023
- 资助金额:
$ 87.36万 - 项目类别:
Collaborative Research: IRES Track I: US/France Multidisciplinary Collaboration in Nanoelectronics, Quantum Materials and Next-Generation Computing
合作研究:IRES 第一轨:美国/法国在纳米电子学、量子材料和下一代计算方面的多学科合作
- 批准号:
2246357 - 财政年份:2023
- 资助金额:
$ 87.36万 - 项目类别:
Standard Grant
Quantum Terahertz Nanoelectronics (QuanTeraN)
量子太赫兹纳米电子学 (QuanTeraN)
- 批准号:
EP/X013456/1 - 财政年份:2023
- 资助金额:
$ 87.36万 - 项目类别:
Research Grant
Formation Processes of Heavy Elements in the Early Universe Elucidated by Superconducting Nanoelectronics, Large-Scale Numerical Simulations, and Data Science
通过超导纳米电子学、大规模数值模拟和数据科学阐明早期宇宙中重元素的形成过程
- 批准号:
23K20035 - 财政年份:2023
- 资助金额:
$ 87.36万 - 项目类别:
Fund for the Promotion of Joint International Research (International Leading Research )
HETEROGENEOUS MATERIAL AND TECHNOLOGICAL PLATFORM FOR A NEW DOMAIN OF POWER NANOELECTRONICS (NANOMAT)
电力纳米电子学新领域 (NANOMAT) 的异质材料和技术平台
- 批准号:
10058065 - 财政年份:2022
- 资助金额:
$ 87.36万 - 项目类别:
EU-Funded
AIIIBV Molecular Beam Epitaxial structures and devices for photonics, nanoelectronics, spintronics and quantum computing.
AIIIBV 用于光子学、纳米电子学、自旋电子学和量子计算的分子束外延结构和器件。
- 批准号:
RGPIN-2018-05345 - 财政年份:2022
- 资助金额:
$ 87.36万 - 项目类别:
Discovery Grants Program - Individual
Aging and Reliability Effects Modelling and Mitigation in Nanoelectronics and Sensors
纳米电子学和传感器中的老化和可靠性影响建模和缓解
- 批准号:
RGPIN-2019-04016 - 财政年份:2022
- 资助金额:
$ 87.36万 - 项目类别:
Discovery Grants Program - Individual