Strong Atom-Photon Interaction for Microphotonic Devices
微光子器件的强原子-光子相互作用
基本信息
- 批准号:0085680
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-10-01 至 2003-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of the proposed research is to develop a new class of devices based on Er-doped microcavities that function as efficient light emitters, as photonic switches and as terahertz signal oscillators. The devices will exploit the basic physics of the strong photon-atom interaction to determine the feasibility of the using of Er-doped media in a high Q microcavity as a basic unit of photonic device design. The fabrication of these devices will involve the design of the structures and the process metrics, such as stress relief, planarity and uniformity of the layers and the phase stability of the materials systems. If successful, this research creates a new class of devices for the generation, detection and manipulation of photons that could be critical to the evolution of all optical networking for the movement and management of information. Our preliminary results obtained with an Er 2 O 3 microcavity medium clad by Si/SiO 2 dielectric stack mirrors showed direct evidence of photon-atom coupling, an enhancement of the light emitted from the microcavity by orders of magnitude at room temperature, and the capability of optical switching. The Si/SiO 2 microcavity structure of this potential new class of devices provides a very important route to CMOS compatible processing and integration. In addition, the high dielectric contrast of the Si/SiO 2 materials system (D nr=2) means that only four layer pairs are required for cavity Qs of 1000. Rare earth elements as quantum dot analogs offer the ultimate in size monodispersity and electronic localization. Erbium is an ideal rare earth optical dopant because of its emission spectrum in the telecommunications standard, l=1.55 micron wavelength region. The main obstacle to the development of a Si:Er platform is the small optical cross section, long radiative lifetime and difficulty of tuning of the atomic resonances of the rare earth elements. We propose to use monolithic planar microcavities to enhance the Er-photon coupling, and hence, add a mechanism for tuning of the oscillator strength. An Er2 O3 cavity medium provides a high density of atoms that can experience coherent interactions with light. These interacting Er atoms are weakly coupled to their host matrix with sharp emission lines. This property yields a device that responds to light as a set of Er-photon coupled oscillators. By tuning the microcavity resonance the emission, transmission and reflection properties of the structure may be controlled at speeds equivalent to the frequency difference between the Er and cavity resonances. We propose a three-year effort to design, fabricate and characterize room temperature operating devices for emission and switching of light in the l=1.55 micron wavelength region. The proposed study explores a new device platform of photon coupling to optically active ions and its application to the generation and control of light. If the promised performance can be achieved, then this Er:Si/SiO2 system will provide a highly manufacturable, silicon compatible photonic device platform.
拟议研究的目标是开发一类新的基于掺铒微腔的器件,这些器件可用作高效的光发射器、光子开关和太赫兹信号振荡器。这些器件将利用强光子-原子相互作用的基本物理特性来确定在高Q微腔中使用掺铒介质作为光子器件设计的基本单元的可行性。这些器件的制造将涉及结构和工艺指标的设计,例如应力释放、层的平面性和均匀性以及材料系统的相稳定性。如果成功的话,这项研究将创造出一种新的设备,用于产生、检测和操纵光子,这对信息移动和管理的所有光学网络的发展至关重要。 我们的初步研究结果表明,在Er 2 O3微腔介质中,Si/SiO2介质叠层反射镜可以直接实现光-原子耦合,室温下微腔的发光强度可以提高几个数量级,并且具有光开关的能力。Si/SiO2微腔结构为这类潜在的新型器件的CMOS兼容工艺和集成提供了一条非常重要的途径。此外,Si/SiO2材料系统的高介电对比度(Dnr =2)意味着腔Qs为1000时只需要四个层对。稀土元素作为量子点类似物提供了最终的尺寸单分散性和电子局域化。铒是一种理想的稀土光学掺杂剂,因为它的发射光谱在电信标准中,l=1.55微米波长区域。 Si:Er平台发展的主要障碍是稀土元素的光学截面小、辐射寿命长以及原子共振调谐困难。我们建议使用单片平面微腔,以提高Er-光子耦合,因此,增加了一个机制,用于调谐的振荡器强度。Er 2 O3腔介质提供了高密度的原子,可以与光进行相干相互作用。这些相互作用的Er原子弱耦合到它们的主体矩阵与尖锐的发射线。这一性质产生了一种响应于光的器件,作为一组Er-光子耦合振荡器。通过调谐微腔谐振,可以在与Er和腔谐振之间的频率差相等的速度下控制结构的发射、透射和反射性质。我们提出了一个为期三年的努力,设计,制造和表征室温操作设备的发射和开关的光在l=1.55微米波长区域。本研究探索了一种新的光子耦合光学活性离子的器件平台及其在光的产生和控制中的应用。如果能够实现所承诺的性能,那么这种Er:Si/SiO2系统将提供高度可制造的、硅兼容的光子器件平台。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lionel Kimerling其他文献
Packaging strategies for 3D integration of Photonic and Electronic chips on a Glass substrate
玻璃基板上光子和电子芯片 3D 集成的封装策略
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
R. Bernson;Saif Wakeel;Parnika Gupta;Luigi Ranno;Drew Weninger;Anuradha Agarwal;Samuel Serna;Juejun Hu;K. Gradkowski;Lionel Kimerling;Peter O’Brien - 通讯作者:
Peter O’Brien
Lionel Kimerling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
1keV/atom以下的团簇离子注入固体极浅表面的过程研究
- 批准号:11075076
- 批准年份:2010
- 资助金额:42.0 万元
- 项目类别:面上项目
相似海外基金
Heavy-Atom-Free Sensitizers for NIR-to-Visible Solar Photon Upconversion
用于近红外到可见太阳光子上转换的无重原子敏化剂
- 批准号:
2312480 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Mathematical Research on Deep-Strong Coupling Regime of Interaction between Artificial Atom and Photon in Circuit QED
电路QED中人造原子与光子相互作用深强耦合机制的数学研究
- 批准号:
20K03768 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Micro cavities for efficient atom-photon coupling by quantum-electrodynamic effects (project supervised by A. Kuhn, Oxford, including secondments
通过量子电动力学效应实现高效原子-光子耦合的微腔(项目由牛津大学 A. Kuhn 监督,包括借调)
- 批准号:
1791703 - 财政年份:2016
- 资助金额:
$ 27万 - 项目类别:
Studentship
Novel 2-photon atom manipulation for ultra-nanoscale processing of diamond
用于金刚石超纳米级加工的新型 2 光子原子操纵
- 批准号:
DP150102054 - 财政年份:2015
- 资助金额:
$ 27万 - 项目类别:
Discovery Projects
A Hybrid Atom-Photon-Superconductor Quantum Interface
混合原子-光子-超导量子接口
- 批准号:
EP/N003527/1 - 财政年份:2015
- 资助金额:
$ 27万 - 项目类别:
Fellowship
Atom-Photon Entanglement and Functional Quantum Network Nodes with Atomic Ensembles
原子光子纠缠和具有原子系综的功能量子网络节点
- 批准号:
1521374 - 财政年份:2015
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Rydberg Blockaded Ensemble Qubits and Atom-Photon Quantum Interfaces
里德堡封锁系综量子位和原子光子量子接口
- 批准号:
1104531 - 财政年份:2011
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Manipulating photon-atom interactions with atomic coherence and interference
利用原子相干性和干涉来操纵光子与原子的相互作用
- 批准号:
0757984 - 财政年份:2008
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Single Photon and Single Atom Sources for Quantum Information Processing
用于量子信息处理的单光子和单原子源
- 批准号:
0218341 - 财政年份:2002
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Theoretical studies in atom-photon interactions: multiatom, multilevel, and multiphoton transitions
原子-光子相互作用的理论研究:多原子、多能级和多光子跃迁
- 批准号:
4618-1998 - 财政年份:2000
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual