An Integrative Statistical Framework for Assessing and Minimizing Errors in Ancient, Non-invasive and Forensic Genetic Studies

用于评估和最小化古代、非侵入性和法医遗传学研究中的错误的综合统计框架

基本信息

  • 批准号:
    0089756
  • 负责人:
  • 金额:
    $ 16.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-02-01 至 2004-12-31
  • 项目状态:
    已结题

项目摘要

Molecular advances have made it possible to study wildlife populations by extracting and analyzing DNA from shed material such as hair or scat and from museum specimens. The familiar forensic practice of DNA fingerprinting can be used on samples of hair or scat to 'capture,' count and track individuals without ever handling or observing them. Unfortunately, these materials contain low quantities of DNA that introduce sporadic errors and inaccuracies into genetic data. Errors also occur when multiple individuals share the same DNA fingerprint or when one clump of hair, in fact, contains hair from two individuals. In this project, a set of statistical methods will be developed to assess the probability that a given sample contains each of the different possible errors. This leads to an efficient strategy for finding and removing errors by focusing further data acquisition on the most unreliable samples. Finally, the statistical framework will be packaged into a computer program and be made available to all researchers via the internet.Forensic, non-invasive and historical genetic information on wild populations can be used to address questions that are impractical or impossible to address by non-genetic methods. This research project will make a major contribution to accessing this type of information because it directly addresses two issues of paramount importance, accuracy and efficiency. But just as with forensic DNA evidence in a court of law, this information must be reliable for the conclusions to be accurate. Because collecting genetic information is also expensive, its acquisition must be efficient.
分子生物学的进步使得研究野生动物种群成为可能,方法是从毛发或粪便等脱落物和博物馆标本中提取和分析DNA。 DNA指纹识别的熟悉法医实践可以用于头发或粪便样本,以“捕获”,计数和跟踪个人,而无需处理或观察他们。 不幸的是,这些材料含有少量的DNA,这会给遗传数据带来零星的错误和不准确。 当多个个体共享相同的DNA指纹时,或者当一束头发实际上包含来自两个个体的头发时,也会发生错误。 在这个项目中,将开发一套统计方法来评估给定样本包含每个不同的可能错误的概率。 这导致了一种有效的策略,通过将进一步的数据采集集中在最不可靠的样本上来发现和消除错误。 最后,统计框架将被打包成一个计算机程序,并通过互联网提供给所有研究人员。有关野生种群的法医、非侵入性和历史遗传信息可用于解决非遗传方法不切实际或不可能解决的问题。 这一研究项目将对获取这类信息作出重大贡献,因为它直接解决了两个至关重要的问题,即准确性和效率。 但就像法庭上的法医DNA证据一样,这些信息必须可靠,结论才能准确。 由于收集遗传信息也很昂贵,因此必须有效地获取这些信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lisette Waits其他文献

Lisette Waits的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lisette Waits', 18)}}的其他基金

IRES: An International, Interdisciplinary Student Research Program in a Biological Hotspot of Southern Ecuador
IRES:厄瓜多尔南部生物热点地区的国际跨学科学生研究项目
  • 批准号:
    1460079
  • 财政年份:
    2015
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Standard Grant
CNH-Ex: Quantifying Linkages Among Land-Use Policies, Agricultural Intensification, Habitat Fragmentation, and Social-Ecological Resilience in a Tropical Biological Corridor
CNH-Ex:量化热带生物走廊土地利用政策、农业集约化、栖息地破碎化和社会生态恢复力之间的联系
  • 批准号:
    1313824
  • 财政年份:
    2013
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Standard Grant
An Interdisciplinary Team-Based International Research Experience in Biodiversity Conservation and Sustainable Community Development in the Ecuadorian Andes
厄瓜多尔安第斯山脉生物多样性保护和可持续社区发展的跨学科团队国际研究经验
  • 批准号:
    0966672
  • 财政年份:
    2010
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Standard Grant
DISSERTATION RESEARCH: A Test of the Generality of the Shuster and Wade Model
论文研究:舒斯特和韦德模型的通用性检验
  • 批准号:
    0807314
  • 财政年份:
    2008
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Standard Grant
Acquisition of Equipment for a Molecular Genetics Core Facility for Research and Research Training in Conservation Genetics and Molecular Ecology
为保护遗传学和分子生态学研究和研究培训的分子遗传学核心设施购置设备
  • 批准号:
    9871024
  • 财政年份:
    1998
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Standard Grant
NSF-NATO POSTDOCTORAL FELLOWSHIPS
NSF-北约博士后奖学金
  • 批准号:
    9633927
  • 财政年份:
    1996
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Fellowship Award

相似海外基金

[SaFEGen]: A Statistical Framework for efficient Evidence Generation in diagnostics
[SaFEGen]:诊断中有效生成证据的统计框架
  • 批准号:
    EP/X041298/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Research Grant
CAREER: Identifying the Role of Tandem Repeats in Great Ape Adaptation through Undergraduate Team Research Using a Novel Statistical Framework
职业:通过本科团队研究使用新颖的统计框架确定串联重复在类人猿适应中的作用
  • 批准号:
    2325466
  • 财政年份:
    2023
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Continuing Grant
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
  • 批准号:
    2311064
  • 财政年份:
    2023
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Standard Grant
A statistical framework for the analysis of the evolution in shape and topological structure of random objects
用于分析随机物体形状和拓扑结构演化的统计框架
  • 批准号:
    2311338
  • 财政年份:
    2023
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Standard Grant
A genome-wide genealogical framework for statistical and population genetic analysis
用于统计和群体遗传分析的全基因组谱系框架
  • 批准号:
    10658562
  • 财政年份:
    2023
  • 资助金额:
    $ 16.6万
  • 项目类别:
Statistical Power Calculation Framework for Spatially Resolved Transcriptomics Experiments
空间分辨转录组学实验的统计功效计算框架
  • 批准号:
    10629262
  • 财政年份:
    2022
  • 资助金额:
    $ 16.6万
  • 项目类别:
A statistical framework for disease classification with scRNA-Seq data
使用 scRNA-Seq 数据进行疾病分类的统计框架
  • 批准号:
    10707488
  • 财政年份:
    2022
  • 资助金额:
    $ 16.6万
  • 项目类别:
Developing an innovative statistical framework to integrate multiple verbal autopsy datasets to estimate cause-specific mortality
开发创新的统计框架来整合多个口头尸检数据集,以估计特定原因的死亡率
  • 批准号:
    10710402
  • 财政年份:
    2022
  • 资助金额:
    $ 16.6万
  • 项目类别:
CAREER: Identifying the Role of Tandem Repeats in Great Ape Adaptation through Undergraduate Team Research Using a Novel Statistical Framework
职业:通过本科团队研究使用新颖的统计框架确定串联重复在类人猿适应中的作用
  • 批准号:
    2144878
  • 财政年份:
    2022
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Continuing Grant
Statistical Power Calculation Framework for Spatially Resolved Transcriptomics Experiments
空间分辨转录组学实验的统计功效计算框架
  • 批准号:
    10453133
  • 财政年份:
    2022
  • 资助金额:
    $ 16.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了