A statistical framework for the analysis of the evolution in shape and topological structure of random objects
用于分析随机物体形状和拓扑结构演化的统计框架
基本信息
- 批准号:2311338
- 负责人:
- 金额:$ 32.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modern data sets often consist of sequential collections of point clouds that are samples from underlying objects with intrinsic geometry, such as curves, surfaces, or manifolds. Analyzing the dynamics of these time series of random objects requires qualitative inference methods that capture information on the geometric properties, i.e., the evolution of descriptors of the 'shape.' Analyzing shape is of paramount interest in many research areas such as genomics, climatology, neuroscience, and finance. In this project, we develop novel methodology and provide probabilistic and statistical foundations to model, analyze, and predict the evolution over time of geometric and topological features of data sets. The research will broaden the scope of the methodological interface between mathematics, computer science, statistics, and probability theory and will have direct applications to genomics and cell biology. We focus our theoretical work to support applications coming from two areas in genomics; cell differentiation in development and tumor evolution. This will be done in collaboration with the Herbert and Florence Irving Institute for cancer dynamics (IICD) at Columbia University. The research findings are also expected to influence model-building and data analysis techniques in geospatial data. Besides the theoretical contribution, we will provide software packages to make the inference methods available to a broad audience. The PIs further propose to design classes and produce expository notes from a cross-disciplinary perspective, and provide projects at the interface of mathematical statistics and topological data analysis for summer undergraduate mentoring.Over the past few decades, there has been substantial interest in the area of geometric data analysis known as topological data analysis (TDA); this provides qualitative multiscale shape descriptors for point clouds. However, in order to draw reliable qualitative inferences on shape and topological features, it is crucial to account for the (evolving) spatial and temporal dependence present in the data. To address these questions, we take the point of view that the fundamental datum is a function, i.e., the observations are points in a function space. This perspective integrates statistical methodology and TDA in the context of functional time series (FTS). We provide novel methodology to model, analyze and predict data generated from nonstationary metric space-valued stochastic processes. Our framework establishes the statistical and probabilistic foundations for applying multiscale geometric descriptors to meaningfully capture their evolving geometric features as well as the investigation of topological invariants. This new methodology will allow practitioners to perform statistical inference to address important scientific questions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代数据集通常由点云的顺序集合组成,点云是来自具有内在几何形状的底层对象的样本,例如曲线、曲面或流形。分析这些随机对象的时间序列的动态需要定性推理方法来捕获几何属性的信息,即“形状”描述符的演变。形状分析在基因组学、气候学、神经科学和金融等许多研究领域都是至关重要的。在这个项目中,我们开发了新的方法,并提供了概率和统计基础来建模,分析和预测数据集的几何和拓扑特征随时间的演变。这项研究将扩大数学、计算机科学、统计学和概率论之间的方法论接口的范围,并将直接应用于基因组学和细胞生物学。我们的理论工作重点是支持基因组学中两个领域的应用;细胞分化在发育和肿瘤进化中的作用。这项研究将与哥伦比亚大学的赫伯特和弗洛伦斯欧文癌症动力学研究所(IICD)合作完成。预计研究结果还将影响地理空间数据的模型构建和数据分析技术。除了理论贡献,我们将提供软件包,使推理方法可供广泛的受众使用。pi进一步建议从跨学科的角度设计课程和制作说明性笔记,并提供数学统计和拓扑数据分析接口的项目,以供夏季本科生指导。在过去的几十年里,人们对几何数据分析领域产生了浓厚的兴趣,即拓扑数据分析(TDA);这为点云提供了定性的多尺度形状描述符。然而,为了在形状和拓扑特征上得出可靠的定性推论,考虑数据中存在的(不断变化的)空间和时间依赖性至关重要。为了解决这些问题,我们认为基本基准是一个函数,也就是说,观测值是函数空间中的点。这个观点整合了统计方法和TDA在功能时间序列(FTS)的背景下。我们提供了新的方法来建模,分析和预测非平稳度量空间值随机过程产生的数据。我们的框架为应用多尺度几何描述符有意义地捕捉其演变的几何特征以及拓扑不变量的研究建立了统计和概率基础。这种新方法将允许从业者执行统计推理来解决重要的科学问题。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anne van Delft其他文献
A general framework to quantify deviations from structural assumptions in the analysis of nonstationary function-valued processes
在非平稳函数值过程分析中量化结构假设偏差的通用框架
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.5
- 作者:
Anne van Delft;Holger Dette - 通讯作者:
Holger Dette
Anne van Delft的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
New approaches for leveraging single-cell data to identify disease-critical genes and gene sets
利用单细胞数据识别疾病关键基因和基因集的新方法
- 批准号:
10768004 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
- 批准号:
10572539 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Optimizing the use of noninvasive respiratory support in the Emergency Department
优化急诊科无创呼吸支持的使用
- 批准号:
10591839 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Identifying disparities in air pollution-attributable cardiovascular health outcomes within a quasi-experimental framework
在准实验框架内确定空气污染导致的心血管健康结果的差异
- 批准号:
10722399 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
A multi-level bias correction model for bulk and single-cell CUT&Tag data
用于批量和单细胞切割的多级偏差校正模型
- 批准号:
10645980 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
A causal framework of communicative participation in people with Parkinson's disease.
帕金森病患者交流参与的因果框架。
- 批准号:
10733233 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Integrative deep learning algorithms for understanding protein sequence-structure-function relationships: representation, prediction, and discovery
用于理解蛋白质序列-结构-功能关系的集成深度学习算法:表示、预测和发现
- 批准号:
10712082 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Real time relapse risk scoring for Opioid Use Disorder (OUD) from clinical trial datasets
根据临床试验数据集对阿片类药物使用障碍 (OUD) 进行实时复发风险评分
- 批准号:
10585452 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Racial Inequities in Opioid Overdose Prevention: The role of local context in the effectiveness of state-level overdose prevention policies
阿片类药物过量预防中的种族不平等:当地环境在州级过量预防政策有效性中的作用
- 批准号:
10641173 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
A genome-wide genealogical framework for statistical and population genetic analysis
用于统计和群体遗传分析的全基因组谱系框架
- 批准号:
10658562 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别: