Solid-State NMR for Plant Structural Biology
用于植物结构生物学的固态核磁共振
基本信息
- 批准号:0089905
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-04-01 至 2007-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Schaefer, JacobMCB-0089905The primary goal of this research is the application of solid-state NMR to three problems of importance in plant biophysics: (1) the identification of possible allosteric binding sites of the CO2-fixing enzyme, ribulose-1,5-bisphosphate carboxylase-oxygenase or Rubisco; (2) the characterization of the local conformation of a regulatory hormone-protein complex with a promoter DNA binding region; and (3) the determination of mechanisms of cross-linking for plant cell-wall proteins and pectins. The principal technique to be used to solve all three problems will be stable-isotope labeling with rotational-echo double-resonance (REDOR) detection. REDOR methods have been under development now for a decade. This project represents an effort to extend the range of applicability of REDOR to more difficult problems than have yet been attempted. This laboratory presently has four multi-frequency solid-state NMR spectrometers suitable for REDOR structural biology problems, and a proposal pending for funding to build two more. Most plant science is done in industrial or academic biology laboratories where there is no access to solid-state NMR. A secondary goal of this work is to make the plant-science community aware of the capabilities of solid-state NMR to solve problems in structural biology.The long-range societal importance of this research is the safe, efficient production of more food. Plants provide approximately 90% of the calories and 80% of the protein for human consumption. This has been true for at least the last 13,000 years and is likely to continue to be true in the future. An often-stated goal of biotechnology in modern agriculture is the improvement in crop yield to feed the hungry. In many cases the hungry live on marginally arable land coming under cultivation for the first time. Of prime importance in this situation is the efficiency of the carbon assimilation by Rubisco. Rubisco catalyzes the conversion of substrate sugar and CO2 to -CH2O- (photosynthesis and carbon assimilation), and of substrate sugar and O2 to CO2 (photorespiration). This destructive competition is inevitable because of the nature of the primary reaction site of Rubisco, which is highly conserved in all photosynthetic bacteria, algae, and plants. After several billion years of evolution, however, higher plants have become capable of discriminating against the photorespiratory pathway in favor of the carbon assimilation pathway, even though O2 has grown to 21% of air and CO2 is only 0.03%. Thus, plants grow aerobically whereas photosynthetic bacteria only grow anaerobically. The control of Rubisco by plants may include alterations in the activity of the primary site caused by non-substrate small-molecule binding at one or more secondary sites. The first research goal is to demonstrate the presence of such an allosteric effect by in vitro and in vivo experiments using 15N{31P} REDOR of uniformly 15N-labeled Rubisco in the presence of various sugar phosphates. The existence of allosteric control of photosynthesis/photorespiration might offer the possibility of altering photorespiratory control in plants like soybeans by genetic modification of secondary sites of Rubisco. The motivation for such an effort would be to adapt the plant to the conditions of high temperature, low water, and high external CO2 expected to be common in the future. The goal is to demonstrate that solid-state NMR can reveal structural details of allosteric binding sites not seen in crystal structures, and that solid-state NMR therefore has the potential to direct biotechnology in the modification of the photosynthesis/photorespiration selectivity of plants for improved carbon assimilation.The millions of acres of farmland in the US currently planted with transgenic soybeans, corn, potatoes, and cotton now support plants that express foreign protein products (herbicide catabolizing enzymes and insecticides) continually. Transgenic plants with expression switched on/off by application of an innocuous diffusable signal molecule are possible. The second goal of this research is to develop solid-state NMR technology that can be used to help direct the design of the regulatory switch.Finally, we recognize that a useful transgenic crop plant must be a highly integrated system of carbon, nitrogen, and water management in a mechanically sound structure. The third goal of this research is to use solid-state NMR to gain an understanding of the architecture of the plant cell wall.
本研究的主要目的是将固态NMR应用于植物生物物理学中的三个重要问题:(1)鉴定CO2固定酶、核酮糖-1,5-二磷酸羧化酶-加氧酶或Rubisco的可能的变构结合位点;(2)表征具有启动子DNA结合区的调节酶-蛋白质复合物的局部构象;(3)植物细胞壁蛋白和果胶交联机理的确定。 用于解决所有这三个问题的主要技术将是稳定同位素标记与旋转回波双共振(REDOR)检测。 REDOR方法已经开发了十年。 该项目代表了将REDOR的适用范围扩展到比尚未尝试的更困难的问题的努力。 该实验室目前有四个多频固态核磁共振光谱仪适用于REDOR结构生物学问题,并提出了一项待资助的建议,以建立两个以上。 大多数植物科学是在工业或学术生物实验室进行的,那里没有固态核磁共振。 这项工作的第二个目标是让植物科学界意识到固态核磁共振技术解决结构生物学问题的能力。这项研究的长期社会重要性是安全,高效地生产更多的食物。 植物为人类提供了大约90%的卡路里和80%的蛋白质。 至少在过去的13,000年里,这一点一直是正确的,而且在未来很可能继续如此。 现代农业中生物技术的一个经常提到的目标是提高作物产量,以养活饥饿的人。 在许多情况下,饥饿的人生活在第一次得到耕种的可耕地上。 在这种情况下,最重要的是Rubisco的碳同化效率。 Rubisco催化底物糖和CO2转化为-CH 2 O-(光合作用和碳同化),以及底物糖和O2转化为CO2(光呼吸)。 这种破坏性的竞争是不可避免的,因为Rubisco的主要反应位点的性质,这是高度保守的所有光合细菌,藻类和植物。 然而,经过数十亿年的进化,高等植物已经能够区分光呼吸途径,而有利于碳同化途径,即使O2已经增长到空气的21%,CO2只有0.03%。 因此,植物需氧生长,而光合细菌只能厌氧生长。 植物对Rubisco的控制可以包括由一个或多个次级位点处的非底物小分子结合引起的初级位点活性的改变。 第一个研究目标是通过在各种糖磷酸盐存在下使用均匀15 N标记的Rubisco的15 N {31 P} REDOR的体外和体内实验来证明这种变构效应的存在。 光合作用/光呼吸的变构控制的存在可能提供了通过Rubisco二级位点的遗传修饰来改变植物如大豆中的光呼吸控制的可能性。 这样做的动机是让工厂适应未来常见的高温、低水和高外部二氧化碳的条件。 目的是证明固态NMR可以揭示晶体结构中看不到的变构结合位点的结构细节,因此固态NMR有可能指导生物技术改变植物的光合作用/光呼吸选择性,以改善碳同化。美国数百万英亩的农田目前种植着转基因大豆、玉米、土豆、棉花现在持续地支持表达外源蛋白质产物(除草剂分解代谢酶和杀虫剂)的植物。 通过应用无害的可扩散信号分子来开启/关闭表达的转基因植物是可能的。 本研究的第二个目标是发展固体核磁共振技术,可以用来帮助指导设计的监管switch.Finally,我们认识到,一个有用的转基因作物植物必须是一个高度集成的系统的碳,氮,水管理在一个机械健全的结构。 本研究的第三个目标是使用固态NMR来了解植物细胞壁的结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacob Schaefer其他文献
EVIDENCE FOR CYCLIC GUANOSINE MONOPHOSPHATE IMPAIRMENT IN ACUTE DECOMPENSATED HEART FAILURE PATIENTS
- DOI:
10.1016/s0735-1097(19)31373-7 - 发表时间:
2019-03-12 - 期刊:
- 影响因子:
- 作者:
Jacob Schaefer;Seethalakshmi Iyer;Yang Chen;Jeson Sangaralingham;John Burnett - 通讯作者:
John Burnett
Variability in C_3-Plant Cell-Wall Biosynthesis in a High-CO_2 Atmosphere by Solid-State NMR
通过固态核磁共振研究高 CO_2 气氛中 C_3-植物细胞壁生物合成的变异性
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Tsyr-Yan Yu;Manmilan Singh;Shigeru Matsuoka;Gary Patti;Gregory Potter;Jacob Schaefer - 通讯作者:
Jacob Schaefer
Hatch success and temperature-dependent development time in two broadly distributed topminnows (Fundulidae)
- DOI:
10.1007/s00114-012-0936-y - 发表时间:
2012-07-01 - 期刊:
- 影响因子:2.100
- 作者:
Jacob Schaefer - 通讯作者:
Jacob Schaefer
Characterization of two forms of cadmium phosphide by magic-angle spinning 31P NMR.
通过魔角旋转 31P NMR 表征两种形式的磷化镉。
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:3.2
- 作者:
S. Holl;Tomasz Kowalewski;Jacob Schaefer - 通讯作者:
Jacob Schaefer
Two-dimensional rotational-echo double resonance of Val1-[1-13C]Gly2-[15N]Ala3-gramicidin A in multilamellar dimyristoylphosphatidylcholine dispersions.
Val1-[1-13C]Gly2-[15N]Ala3-短杆菌肽 A 在多层二肉豆蔻酰磷脂酰胆碱分散体中的二维旋转回声双共振。
- DOI:
10.1021/bi00080a035 - 发表时间:
1993 - 期刊:
- 影响因子:2.9
- 作者:
A. W. Hing;Jacob Schaefer - 通讯作者:
Jacob Schaefer
Jacob Schaefer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacob Schaefer', 18)}}的其他基金
SG: Collaborative Research: A genomic analysis of the impact of genetic divergence, and chromosomal rearrangement on introgression in replicate Fundulus hybrid zones
SG:合作研究:遗传差异和染色体重排对重复眼底杂交区基因渗入的影响的基因组分析
- 批准号:
1556858 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Improvements to the USM/GCRL Ichthyological Collections
USM/GCRL 鱼类学收藏的改进
- 批准号:
0749755 - 财政年份:2008
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: Phylogeography, Ecology and Reproductive Isolation in the Fundulus notatus Complex
合作研究: 眼底复合体的系统发育地理学、生态学和生殖隔离
- 批准号:
0716985 - 财政年份:2007
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Solid State NMR for Plant Structural Biology
用于植物结构生物学的固态核磁共振
- 批准号:
0613019 - 财政年份:2006
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Solid-State NMR Analysis of Chain Packing and Dynamics in Polycarbonates
聚碳酸酯链堆积和动力学的固态核磁共振分析
- 批准号:
0451685 - 财政年份:2005
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Solid-State NMR for Polymeric Nanoparticles
聚合物纳米颗粒的固态核磁共振
- 批准号:
0097202 - 财政年份:2001
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Packing, Local Order, and Dynamic Processes in Glassy Polymers
玻璃态聚合物中的堆积、局部有序和动态过程
- 批准号:
9729734 - 财政年份:1998
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Shapes of Biomacromolecular Complexes by Solid-State NuclearMagnetic Resonance
固态核磁共振研究生物大分子复合物的形状
- 批准号:
9604860 - 财政年份:1997
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Shapes of Protein-Macromolecule Complexes by Solid-State Nuclear Magnetic Resonance
通过固态核磁共振研究蛋白质-大分子复合物的形状
- 批准号:
9316161 - 财政年份:1994
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Construction of a 500-MHz REDOR NMR Spectrometer
500 MHz REDOR NMR 波谱仪的构建
- 批准号:
9400072 - 财政年份:1994
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
微波有源Scattering dark state粒子的理论及应用研究
- 批准号:61701437
- 批准年份:2017
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Pushing the Limits of High-Field Solid-State NMR Technology: Enhancing Applications to Advanced Materials, the Life Sciences and Pharmaceuticals
突破高场固态核磁共振技术的极限:增强先进材料、生命科学和制药的应用
- 批准号:
EP/Z532836/1 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Research Grant
Mechanism and Structure of Functional Materials by Solid-state NMR
通过固态核磁共振研究功能材料的机理和结构
- 批准号:
EP/X041751/1 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Fellowship
The UK High-Field Solid-State NMR National Research Facility: EPSRC Core Equipment Award 2022
英国高场固态核磁共振国家研究设施:2022 年 EPSRC 核心设备奖
- 批准号:
EP/X03481X/1 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Research Grant
500 MHz Solid State NMR Spectrometer
500 MHz 固态核磁共振波谱仪
- 批准号:
524658450 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Major Research Instrumentation
Structural Studies of Proteins by Paramagnetic Solid-State NMR Spectroscopy
通过顺磁固态核磁共振波谱法研究蛋白质的结构
- 批准号:
2303862 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
MRI: Track 1 Acquisition of a 500 MHz solid/liquid-state NMR to Expand Interdisciplinary Research and Education at Howard University
MRI:第一轨道采购 500 MHz 固态/液态 NMR 以扩大霍华德大学的跨学科研究和教育
- 批准号:
2320489 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Replacement procurement: 200 MHz Solid-State NMR Spectrometer
更换采购:200 MHz 固态核磁共振波谱仪
- 批准号:
530325402 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Major Research Instrumentation
Console solid-state NMR 400 MHz
控制台固态 NMR 400 MHz
- 批准号:
527030253 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Major Research Instrumentation
Revealing the Cell Wall Organization of Fungal Pathogens and Structural Responses to Antifungal Drugs Using Cellular Solid-State NMR
使用细胞固态核磁共振揭示真菌病原体的细胞壁组织和抗真菌药物的结构反应
- 批准号:
10566511 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Structural Biology and Biophysics of Alpha-Synuclein Fibrils by Solid-State NMR
通过固态核磁共振研究 α-突触核蛋白原纤维的结构生物学和生物物理学
- 批准号:
10605819 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别: