CAREER: Support Vector Methods for Functional Genomic Analysis
职业:功能基因组分析的支持向量方法
基本信息
- 批准号:0093302
- 负责人:
- 金额:$ 44.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-03-15 至 2004-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As the Human Genome Project nears completion the need grows for functional genomic analyses which in addition to the primary genomic sequence involve other types of data such as gene expression measurements from microarray hybridization experiments. Research in functional genomics involves a range of computational problems including visualization, clustering, classification, regression, knowledge representation, and predictive modeling. This project will touch on each of these areas, but the primary focus will be on developing machine learning techniques that learn to place genes into discrete functional categories in order to simplify and render more tractable the problem of inferring gene function from genomic data. To the end the PI will build on his prior work which showed that a support vector machine (SVM) can be successfully trained using DNA microarray expression data to recognize various gene functional categories, and will develop methods for combining coding sequence, promoter region, gene expression, and other types of genomic data in SVM-based learning algorithms. The research will lead to improved understanding of the ability of various machine learning techniques to recognize different types of gene functional classes, and will also yield new techniques for learning simultaneously from multiple types of data. Learning from heterogeneous data sets is a core issue in artificial intelligence and machine learning; the ability to combine knowledge from various types of genomic data is critical for understanding the cell at the molecular level, and should lead to important insights into gene function.
随着人类基因组计划接近完成,对功能基因组分析的需求增长,除了主要的基因组序列外,还涉及其他类型的数据,如来自微阵列杂交实验的基因表达测量。功能基因组学的研究涉及一系列计算问题,包括可视化、聚类、分类、回归、知识表示和预测建模。 该项目将涉及这些领域中的每一个,但主要重点将是开发机器学习技术,学习将基因置于离散的功能类别中,以简化和使从基因组数据推断基因功能的问题更加易于处理。 最后,PI将建立在他之前的工作基础上,该工作表明支持向量机(SVM)可以使用DNA微阵列表达数据成功地训练以识别各种基因功能类别,并将开发将编码序列,启动子区域,基因表达和其他类型的基因组数据结合在基于SVM的学习算法中的方法。 这项研究将有助于更好地理解各种机器学习技术识别不同类型基因功能类的能力,并将产生从多种类型数据中同时学习的新技术。 从异质数据集中学习是人工智能和机器学习的核心问题;从各种类型的基因组数据中联合收割机知识的能力对于在分子水平上理解细胞至关重要,并且应该导致对基因功能的重要见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Noble其他文献
Pure-tone acuity, speech-hearing ability and deafness in acoustic trauma. A review of the literature.
纯音敏锐度、言语听力能力和声损伤中的耳聋。
- DOI:
- 发表时间:
1973 - 期刊:
- 影响因子:0
- 作者:
William Noble - 通讯作者:
William Noble
910: Impact of Baseline Symptom Severity on Threshold Changes to Trigger Crossing Over to Active Therapy in MTOPS Trial
- DOI:
10.1016/s0022-5347(18)38159-x - 发表时间:
2004-04-01 - 期刊:
- 影响因子:
- 作者:
Claus G. Roehrborn;John W. Kusek;Leroy M. Nyberg;William Noble;Oliver Bautista;Kevin T. McVary;Kevin M. Slawin;Steven A. Kaplan - 通讯作者:
Steven A. Kaplan
Support vector machine applications in computational biology
- DOI:
10.7551/mitpress/4057.003.0005 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
William Noble - 通讯作者:
William Noble
A PERMUTATION TEST FOR A REPEATED MEASURES DESIGN
重复测量设计的排列检验
- DOI:
10.4148/2475-7772.1386 - 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
J. J. Higgins;William Noble - 通讯作者:
William Noble
William Noble的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Noble', 18)}}的其他基金
DMS/NIGMS 2: Deep learning for repository-scale analysis of tandem mass spectrometry proteomics data
DMS/NIGMS 2:用于串联质谱蛋白质组数据存储库规模分析的深度学习
- 批准号:
2245300 - 财政年份:2023
- 资助金额:
$ 44.51万 - 项目类别:
Continuing Grant
EAGER: Cloud-based analysis of mass spectrometry proteomics data
EAGER:基于云的质谱蛋白质组数据分析
- 批准号:
1549932 - 财政年份:2015
- 资助金额:
$ 44.51万 - 项目类别:
Standard Grant
CAREER: Support Vector Methods for Functional Genomic Analysis
职业:功能基因组分析的支持向量方法
- 批准号:
0431725 - 财政年份:2004
- 资助金额:
$ 44.51万 - 项目类别:
Continuing Grant
Generative and Discriminative Methods for Gene Finding and Functional Annotation
基因查找和功能注释的生成和判别方法
- 批准号:
0243257 - 财政年份:2002
- 资助金额:
$ 44.51万 - 项目类别:
Standard Grant
Generative and Discriminative Methods for Gene Finding and Functional Annotation
基因查找和功能注释的生成和判别方法
- 批准号:
0078523 - 财政年份:2000
- 资助金额:
$ 44.51万 - 项目类别:
Standard Grant
相似国自然基金
两性离子载体(zwitterionic support)作为可溶性支载体在液相有机合成中的应用
- 批准号:21002080
- 批准年份:2010
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于Support Vector Machines(SVMs)算法的智能型期权定价模型的研究
- 批准号:70501008
- 批准年份:2005
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fundamental research and establishment of novel silicon photonic support vector machine towards multilayered architecture
面向多层结构的新型硅光子支持向量机的基础研究与建立
- 批准号:
23H01885 - 财政年份:2023
- 资助金额:
$ 44.51万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Support for Vector Biology Training for Sustainable Control of Vector Borne diseases in East Africa
支持媒介生物学培训以可持续控制东非媒介传播疾病
- 批准号:
10675897 - 财政年份:2023
- 资助金额:
$ 44.51万 - 项目类别:
Parallel Support Vector Machine Training on a Budget
预算内的并行支持向量机训练
- 批准号:
418003699 - 财政年份:2019
- 资助金额:
$ 44.51万 - 项目类别:
Research Grants
Development of the screening method for biomarkers to predict the response to dCRT in cancer cells by support vector machine.
开发生物标志物筛选方法,通过支持向量机预测癌细胞对 dCRT 的反应。
- 批准号:
19K07744 - 财政年份:2019
- 资助金额:
$ 44.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
GMP transition support for viral vector manufacture
病毒载体生产的 GMP 过渡支持
- 批准号:
900096 - 财政年份:2017
- 资助金额:
$ 44.51万 - 项目类别:
Centres
A vector excreta surveillance system (VESS) to support the rapid detection of vector-borne diseases
支持快速检测媒介传播疾病的媒介排泄物监测系统 (VESS)
- 批准号:
MR/P025285/1 - 财政年份:2017
- 资助金额:
$ 44.51万 - 项目类别:
Research Grant
Dual Training of Nonlinear Support Vector Machines on a Budget
预算内非线性支持向量机的双重训练
- 批准号:
287461288 - 财政年份:2016
- 资助金额:
$ 44.51万 - 项目类别:
Research Grants
Support Vector Machines for Censored Data
用于审查数据的支持向量机
- 批准号:
1407732 - 财政年份:2014
- 资助金额:
$ 44.51万 - 项目类别:
Continuing Grant
Support vector machine with window-size self-adjusting for high-accuracy predicting of micrometeorological data
窗口大小自调节支持向量机微气象数据高精度预测
- 批准号:
26660198 - 财政年份:2014
- 资助金额:
$ 44.51万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Identifying endophenotypes for schizophrenia and autism: a support vector machine learning approach
识别精神分裂症和自闭症的内表型:支持向量机学习方法
- 批准号:
nhmrc : 1072593 - 财政年份:2014
- 资助金额:
$ 44.51万 - 项目类别:
Early Career Fellowships