CAREER: A Methodology to Systematically Characterize and Diagnose Manufacturing Variation with In-Process Measurement Data

职业生涯:一种利用过程中测量数据系统地表征和诊断制造偏差的方法

基本信息

  • 批准号:
    0093580
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-06-01 至 2004-05-31
  • 项目状态:
    已结题

项目摘要

The objective of this Faculty Early Career Development (CAREER) award is to develop, implement, and teach a systematic and generic methodology for diagnosing product and process variation in a modern data-rich manufacturing environment. The methodology developed in this CAREER plan will provide a means of effectively utilizing the measurement data for manufacturing variation reduction, leading to higher quality manufactured products that boost the competitiveness of our nations industries. The primary focus of the research is on representing, characterizing, and quantifying the precise nature of the temporal and spatial patterns. The intent is that graphical displays of the variation pattern characteristics will serve as powerful diagnostic aids which facilitate the identification and elimination of root causes of variation by human operators. The methods that will be employed have a strong multidisciplinary emphasis. Temporal and spatial representations of variation, which are based on underlying physical and engineering principles, will be incorporated into the proposed statistical diagnosis algorithms in order to effectively extract and interpret meaningful information from the data. Linear and nonlinear spatial representations and joint time-frequency temporal representations will provide general, yet descriptive, characterizations of process variation. As the structure of in-process measurement data becomes increasingly dense, methods developed for signal and image processing applications gain importance as tools for statistical process control (SPC) of manufacturing variation. Concepts from sensor array processing and time-frequency analysis will be used extensively in the research plan. The proposed education plan emphasizes the need for this multidisciplinary approach to SPC. The curriculum will provide training in the physics and modeling of complex manufacturing processes (from a mechanical engineering perspective) and sensing and signal processing technology (from an electrical engineering perspective), as well as in the statistical fundamentals of SPC. Virtual plant tours and case studies from the results of the research plan will be used to illustrate the complexity of advanced manufacturing processes, the prevalence of in-process measurement technology, and the multidisciplinary methods needed to effectively utilize the data.The methodology developed in this CAREER plan will provide a concrete basis for integrating systematic diagnosis strategies into SPC, which will advance the body of scientific knowledge on SPC for manufacturing variation reduction. To reach a wide audience, the results will be broadly disseminated in applied statistics, quality control, signal processing, and manufacturing conferences and journals. The multidisciplinary emphasis will strengthen the link between the signal processing and SPC disciplines and help to attract students and researchers from other academic areas to the field of manufacturing quality control, bringing with them an infusion of new ideas. The plan involves close collaboration with major representatives of two industries that are vital to the US economy - automobile and electronics manufacturing. Both have demonstrated a strong commitment to ensuring the success of this CAREER plan, and their manufacturing facilities will serve as testbeds for directly implementing the results. It is expected that the results will be broadly applicable in a variety of manufacturing industries.
该学院早期职业发展(CAREER)奖的目标是开发、实施和教授一种系统的通用方法,用于在现代数据丰富的制造环境中诊断产品和流程变化。 该职业计划中开发的方法将提供一种有效利用测量数据来减少制造变异的方法,从而生产出更高质量的制成品,从而提高我们国家工业的竞争力。 研究的主要重点是表示、表征和量化时间和空间模式的精确性质。其目的是,变化模式特征的图形显示将作为强大的诊断辅助工具,有助于操作员识别和消除变化的根本原因。 将采用的方法具有很强的多学科重点。基于基本物理和工程原理的变化的时间和空间表示将被纳入所提出的统计诊断算法中,以便有效地从数据中提取和解释有意义的信息。线性和非线性空间表示以及联合时频时间表示将提供过程变化的一般但描述性的表征。随着过程中测量数据的结构变得越来越密集,为信号和图像处理应用开发的方法作为制造偏差的统计过程控制 (SPC) 工具变得越来越重要。研究计划将广泛使用传感器阵列处理和时频分析的概念。拟议的教育计划强调了对 SPC 采取这种多学科方法的必要性。该课程将提供复杂制造过程的物理和建模(从机械工程角度)、传感和信号处理技术(从电气工程角度)以及 SPC 统计基础知识方面的培训。研究计划结果中的虚拟工厂参观和案例研究将用于说明先进制造工艺的复杂性、过程中测量技术的普遍性以及有效利用数据所需的多学科方法。该职业计划中开发的方法将为将系统诊断策略集成到 SPC 中提供具体基础,这将推进 SPC 减少制造偏差的科学知识体系。为了吸引更广泛的受众,研究结果将在应用统计、质量控制、信号处理以及制造会议和期刊中广泛传播。多学科的重点将加强信号处理和SPC学科之间的联系,并有助于吸引其他学术领域的学生和研究人员进入制造质量控制领域,为他们带来新的想法。 该计划涉及与对美国经济至关重要的两个行业——汽车和电子制造——的主要代表密切合作。 两家公司都表现出了确保这一职业计划成功的坚定承诺,他们的制造设施将作为直接实施结果的试验台。预计该成果将广泛适用于各种制造行业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Apley其他文献

Daniel Apley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Apley', 18)}}的其他基金

Collaborative Research: Model-Based Multidisciplinary Dynamic Decisions in Design
协作研究:设计中基于模型的多学科动态决策
  • 批准号:
    1537641
  • 财政年份:
    2015
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
A Methodology for Reliable Risk Assessment with Error-prone Electronic Medical Records Using Optimal Design of Experiments Concepts
使用实验概念优化设计对容易出错的电子病历进行可靠风险评估的方法
  • 批准号:
    1436574
  • 财政年份:
    2014
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Leveraging Noncontact Dimensional Metrology to Understand Complex Part-to-Part Variation
合作研究:利用非接触式尺寸计量来理解复杂的零件间差异
  • 批准号:
    1265709
  • 财政年份:
    2013
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Enhancing Identifiability of Computer Simulation Models via Design for Calibration
通过校准设计增强计算机仿真模型的可识别性
  • 批准号:
    1233403
  • 财政年份:
    2012
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Blind Discovery of Variation Sources for Visualization by Multidisciplinary Teams
协作研究:多学科团队盲目发现可视化变异源
  • 批准号:
    0826081
  • 财政年份:
    2008
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
A Bayesian Treatment of Uncertainty in Simulation-Based Methods for Enhancing Process and Product Robustness
贝叶斯处理基于仿真的方法中的不确定性,以增强过程和产品的鲁棒性
  • 批准号:
    0758557
  • 财政年份:
    2008
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: A Methodology to Systematically Characterize and Diagnose Manufacturing Variation with In-Process Measurement Data
职业生涯:一种利用过程中测量数据系统地表征和诊断制造偏差的方法
  • 批准号:
    0354824
  • 财政年份:
    2003
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant

相似海外基金

SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
  • 批准号:
    2327427
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
A methodology to connect functionalized gonadal constructs to a chick embryo through mechanically induced blood vessels from an egg
一种通过鸡蛋机械诱导血管将功能化性腺结构连接到鸡胚胎的方法
  • 批准号:
    24K15741
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAS: Developing Data-Driven, Automated Methodology to Understand and Control Light-Driven Catalytic Processes
CAS:开发数据驱动的自动化方法来理解和控制光驱动的催化过程
  • 批准号:
    2350257
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
スマートシティのエコシステム構築メソドロジー(methodology)
智慧城市生态系统构建方法论
  • 批准号:
    24K05098
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mindset Dynamics: Using the Perception Clarity Methodology (PCM) to shift perceptions
心态动态:使用感知清晰度方法 (PCM) 来转变认知
  • 批准号:
    ES/Y011015/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Research Grant
Supporting Mental Health in Young People: Integrated Methodology for cLinical dEcisions and evidence-based interventions
支持年轻人的心理健康:临床决策和循证干预的综合方法
  • 批准号:
    10072391
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    EU-Funded
MEGASKILLS [MEthodology of Psycho-pedagogical, Big Data and Commercial Video GAmes procedures for the European SKILLS Agenda Implementation]
MEGASKILLS [欧洲技能议程实施的心理教育学、大数据和商业视频游戏程序的方法]
  • 批准号:
    10069843
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    EU-Funded
Development and Implementation of Participatory Urban Design Methodology for Introducing Climate Change Mitigation and Adaptation Measures
制定和实施参与式城市设计方法,引入气候变化减缓和适应措施
  • 批准号:
    23H01578
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Curriculum Development Methodology for Inclusive Physical Education that Respects Diversity
尊重多样性的包容性体育课程开发方法
  • 批准号:
    23K02486
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Agile development methodology of matched synthetic control for Bayesian trials in the era of genomic medicine
基因组医学时代贝叶斯试验匹配合成控制的敏捷开发方法
  • 批准号:
    2890403
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了