Enhancing Identifiability of Computer Simulation Models via Design for Calibration
通过校准设计增强计算机仿真模型的可识别性
基本信息
- 批准号:1233403
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-15 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this award is to develop a Design for Calibration (DfC) methodology for enhancing identifiability in simulation models. Identifiability refers to the difficulty in separating two general sources of uncertainty - parameter uncertainty and model uncertainty - in predictive modeling. Parameter uncertainty results from imperfect knowledge of the underlying physical parameters, and model uncertainty results from approximations and other inaccuracies in a simulation model. To ensure proper identifiability of these uncertainties when combining abundant simulation data with limited physical experimental data, the research takes advantage of two key enabling factors, the first being the inherently multi-response nature of computer simulations, and the second being the availability of extensive simulation results prior to designing the physical experiment. Using spatial random field modeling within a Bayesian framework, the methodology will determine the best subset of response variables to measure experimentally and the most efficient combination of input settings to use over the experiments, with the objective of optimally enhancing identifiability of the uncertainties. If successful, the results of this research will help ensure identifiability of predictive uncertainties in a manner that allows limited experimental resources to be used most efficiently. This is critically important in simulation-based engineering and science across all engineering disciplines for many reasons that extend beyond achieving good myopic prediction. Learning and distinguishing the true physical parameters and simulation model inaccuracies has broad-reaching implications for i) new product/process designs that are much more complex than the experimental testbed, ii) improving future generations of simulation code, and iii) providing more accurate prediction over a wider set of input regions. Because the methodology is not tied to a particular type of simulation code or application domain, it is expected to be widely applicable. This work will leverage the broad-based constituency of the interdisciplinary doctoral Predictive Science and Engineering Design cluster at Northwestern, through which multidisciplinary testbed applications will be drawn and the results disseminated throughout different engineering domains.
该奖项的研究目标是开发一种校准设计(DfC)方法,以提高仿真模型的可识别性。可识别性是指在预测建模中分离两种一般不确定性来源-参数不确定性和模型不确定性的难度。参数不确定性是由于对基本物理参数的不完全了解造成的,模型不确定性是由于模拟模型中的近似值和其他不准确性造成的。为了确保适当的识别这些不确定性时,结合丰富的模拟数据与有限的物理实验数据,研究利用两个关键的有利因素,第一个是固有的多响应性质的计算机模拟,第二个是广泛的模拟结果的可用性之前,设计的物理实验。在贝叶斯框架内使用空间随机场建模,该方法将确定实验测量的响应变量的最佳子集和在实验中使用的输入设置的最有效组合,其目标是最佳地增强不确定性的可识别性。如果成功的话,这项研究的结果将有助于确保预测不确定性的可识别性,从而使有限的实验资源得到最有效的利用。这在所有工程学科的基于仿真的工程和科学中至关重要,原因有很多,不仅仅是实现良好的近视预测。学习和区分真实的物理参数和仿真模型的不准确性对i)比实验测试台复杂得多的新产品/过程设计,ii)改进未来几代仿真代码,以及iii)在更广泛的输入区域集合上提供更准确的预测具有广泛的影响。由于该方法不依赖于特定类型的仿真代码或应用领域,因此预计将具有广泛的适用性。这项工作将利用西北大学跨学科博士预测科学与工程设计集群的广泛支持,通过该集群,将绘制多学科试验台应用程序,并将结果传播到不同的工程领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Apley其他文献
Daniel Apley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Apley', 18)}}的其他基金
Collaborative Research: Model-Based Multidisciplinary Dynamic Decisions in Design
协作研究:设计中基于模型的多学科动态决策
- 批准号:
1537641 - 财政年份:2015
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
A Methodology for Reliable Risk Assessment with Error-prone Electronic Medical Records Using Optimal Design of Experiments Concepts
使用实验概念优化设计对容易出错的电子病历进行可靠风险评估的方法
- 批准号:
1436574 - 财政年份:2014
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: Leveraging Noncontact Dimensional Metrology to Understand Complex Part-to-Part Variation
合作研究:利用非接触式尺寸计量来理解复杂的零件间差异
- 批准号:
1265709 - 财政年份:2013
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: Blind Discovery of Variation Sources for Visualization by Multidisciplinary Teams
协作研究:多学科团队盲目发现可视化变异源
- 批准号:
0826081 - 财政年份:2008
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
A Bayesian Treatment of Uncertainty in Simulation-Based Methods for Enhancing Process and Product Robustness
贝叶斯处理基于仿真的方法中的不确定性,以增强过程和产品的鲁棒性
- 批准号:
0758557 - 财政年份:2008
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
CAREER: A Methodology to Systematically Characterize and Diagnose Manufacturing Variation with In-Process Measurement Data
职业生涯:一种利用过程中测量数据系统地表征和诊断制造偏差的方法
- 批准号:
0354824 - 财政年份:2003
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
CAREER: A Methodology to Systematically Characterize and Diagnose Manufacturing Variation with In-Process Measurement Data
职业生涯:一种利用过程中测量数据系统地表征和诊断制造偏差的方法
- 批准号:
0093580 - 财政年份:2001
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: DMS/NIGMS 1: Identifiability investigation of Multi-scale Models of Infectious Diseases
合作研究:DMS/NIGMS 1:传染病多尺度模型的可识别性研究
- 批准号:
10794480 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Model identifiability assessment
模型可识别性评估
- 批准号:
573949-2022 - 财政年份:2022
- 资助金额:
$ 32万 - 项目类别:
University Undergraduate Student Research Awards
Simultaneous calibration of hydrologic model structure and parameters to enhance model performance and process identifiability
同时标定水文模型结构和参数,以增强模型性能和过程可识别性
- 批准号:
558879-2021 - 财政年份:2022
- 资助金额:
$ 32万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Simultaneous calibration of hydrologic model structure and parameters to enhance model performance and process identifiability
同时标定水文模型结构和参数,以增强模型性能和过程可识别性
- 批准号:
558879-2021 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CAREER: Identifiability and Inference for Phylogenetic Networks using Applied Algebraic Geometry
职业:使用应用代数几何进行系统发育网络的可识别性和推理
- 批准号:
1945584 - 财政年份:2020
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Investigating the identifiability of machine learning and its application to consumer behavior analysis
研究机器学习的可识别性及其在消费者行为分析中的应用
- 批准号:
20K22125 - 财政年份:2020
- 资助金额:
$ 32万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Collaborative Research: Efficient Methods for Identifiability of Dynamic Models
协作研究:动态模型可识别性的有效方法
- 批准号:
1853650 - 财政年份:2019
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
CAREER: Identifiability and Inferences for Structured Latent Attribute Models
职业:结构化潜在属性模型的可识别性和推理
- 批准号:
1846747 - 财政年份:2019
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Collaborative Research: Efficient Methods for Identifiability of Dynamic Models
协作研究:动态模型可识别性的有效方法
- 批准号:
1853032 - 财政年份:2019
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: Efficient Methods for Identifiability of Dynamic Models
协作研究:动态模型可识别性的有效方法
- 批准号:
1853482 - 财政年份:2019
- 资助金额:
$ 32万 - 项目类别:
Standard Grant