Proposal on Pulse Shaping for Waves in Multiscale Media

关于多尺度介质中波的脉冲整形的建议

基本信息

  • 批准号:
    0093992
  • 负责人:
  • 金额:
    $ 8.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-09-15 至 2004-08-31
  • 项目状态:
    已结题

项目摘要

Solna0093992 The investigator analyzes how a propagating wave pulsebehave in a medium with rough variations. Predicting theevolution of the wave pulse from information about the`roughness' of the medium is a problem of deep mathematical andpractical interest, as is the inverse problem of deducinginformation about the medium from measurements of a transmittedpulse. Most often a detailed description of the (fine scale)variations of the medium is not possible, only a description oftheir statistical character. Hence, the investigator considersthe fine scale medium variations as a realization of a stochasticprocess. This entails analysis of differential equations withrandomly varying coefficients. The project has three specificobjectives: First, obtain a characterization of thetransformation of sound pulses propagating in a medium with acontinuum of length scales, a medium defined in terms of a randomfractal. Second, extend and use theory about the transformationof a wave pulse in some specific inverse problems, in particular,high contrast seismic imaging and time reversal mirrors. Third,derive strict bounds for how an electromagnetic pulse can beaffected by the medium heterogeneity without knowing the detailsof these variations. The main question the investigator addresses is: How does apropagating wave behave in a medium that varies when thevariations are not small? For instance, when a laser beampropagates through the turbulent atmosphere how is it affected byintense, turbulent, variations in the local speed of propagation?When such medium variations are smooth, say with a constantspeed of propagation, the problem is well understood. For roughmedium variations, as in the above example, the interaction of awave pulse with the medium heterogeneities is a fundamental yetlargely open question. This problem, predicting the evolution ofsignal or wave pulse that propagates in a rough medium, is ofdeep mathematical and practical interest. In addition to wavepropagation in the turbulent atmosphere there are many otherapplications. In reflection seismology the earth's crust isprobed with a wave pulse and the reflected pulses are used toinfer knowledge about macroscale variations in the medium. It isthen important to know how the rough microscale variations in themedium affect the probing pulse. Remote sensing, ocean acoustics,and medical imaging provide similar examples. In communicationsystems, it is important to be able to describe how mediumimperfections and variations affect the propagating signal. Inthe theory of composite materials, it is important to optimallyconstruct a complex material so that it has some desiredpropagation properties.
研究者分析了传播波脉冲在具有粗糙变化的介质中的行为。从介质的“粗糙度”信息中预测波脉冲的演变是一个深刻的数学和实际兴趣问题,正如从传输脉冲的测量中推断介质信息的反问题一样。大多数情况下,不可能详细描述(精细尺度)介质的变化,只能描述其统计特征。因此,研究者认为细尺度的介质变化是一个随机过程的实现。这就需要对系数随机变化的微分方程进行分析。该项目有三个具体目标:首先,获得声音脉冲在具有长度尺度连续体的介质中传播的变换特征,这种介质是根据随机分形定义的。第二,将波脉冲变换理论推广应用于一些具体的反演问题,特别是高对比地震成像和时间反演镜。第三,在不知道这些变化的细节的情况下,推导出电磁脉冲如何受到介质非均质性影响的严格界限。研究者解决的主要问题是:当变化不小时,传播波在变化介质中的表现如何?例如,当激光束在湍流大气中传播时,它是如何受到本地传播速度的剧烈、湍流变化的影响的?当这种介质的变化是平滑的,比如以恒定的传播速度,这个问题就很好理解了。对于粗糙介质的变化,如在上面的例子中,波脉冲与介质非均质性的相互作用是一个基本的但很大程度上尚未解决的问题。这个问题预测在粗糙介质中传播的信号或波脉冲的演变,具有深刻的数学和实际意义。除了湍流大气中的波传播外,还有许多其他应用。在反射地震学中,用波脉冲探测地壳,用反射脉冲推断出介质宏观尺度变化的知识。因此,了解介质中粗糙的微尺度变化如何影响探测脉冲是很重要的。遥感、海洋声学和医学成像也提供了类似的例子。在通信系统中,能够描述介质缺陷和变化如何影响传播信号是很重要的。在复合材料理论中,重要的是优化构造复杂材料,使其具有某些期望的传播特性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Knut Solna其他文献

Superresolution and duality for time-reversal of waves in random media
  • DOI:
    10.1016/j.physleta.2005.05.030
  • 发表时间:
    2005-07-04
  • 期刊:
  • 影响因子:
  • 作者:
    Albert Fannjiang;Knut Solna
  • 通讯作者:
    Knut Solna
Three $$l_1$$ Based Nonconvex Methods in Constructing Sparse Mean Reverting Portfolios
  • DOI:
    10.1007/s10915-017-0578-5
  • 发表时间:
    2017-10-20
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Xiaolong Long;Knut Solna;Jack Xin
  • 通讯作者:
    Jack Xin

Knut Solna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Knut Solna', 18)}}的其他基金

Deep Wave Probing and Imaging of Heavy Tailed Fabric
重尾织物的深波探测和成像
  • 批准号:
    2308389
  • 财政年份:
    2023
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Standard Grant
Novel Approaches to Wave Propagation in Random Media
随机介质中波传播的新方法
  • 批准号:
    2010046
  • 财政年份:
    2020
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Standard Grant
OP: Complex Media Optics and Imaging
OP:复杂媒体光学和成像
  • 批准号:
    1616954
  • 财政年份:
    2016
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Stochastic and Multiscale Analysis of Ambient-Noise Generated Scattered Waves and Imaging
合作研究:环境噪声产生的散射波和成像的随机和多尺度分析
  • 批准号:
    0908274
  • 财政年份:
    2009
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Standard Grant
AMC-SS: Propagation and Application of Waves in Complex Media
AMC-SS:波在复杂介质中的传播和应用
  • 批准号:
    0709389
  • 财政年份:
    2007
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Standard Grant
Multiscale theory for paraxial waves with applications
近轴波多尺度理论及其应用
  • 批准号:
    0307011
  • 财政年份:
    2003
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Continuing Grant

相似海外基金

Improving the efficiency of light to kinetic energy conversion by pulse shaping of laser pulses that generate bubbles.
通过对产生气泡的激光脉冲进行脉冲整形,提高光到动能的转换效率。
  • 批准号:
    23K03279
  • 财政年份:
    2023
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Femtosecond laser with frequency conversion, pulse shaping, and detection at 100 kHz repetition rate
具有频率转换、脉冲整形和 100 kHz 重复率检测功能的飞秒激光器
  • 批准号:
    447563061
  • 财政年份:
    2020
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Major Research Instrumentation
Investigation and Application of Pulse Shaping to High-Frequency Electron Paramagnetic Resonance (EPR) / Zero-field Optically Detected Magnetic Resonance (ODMR) Spectroscopy
脉冲整形在高频电子顺磁共振 (EPR)/零场光检测磁共振 (ODMR) 光谱中的研究和应用
  • 批准号:
    2004252
  • 财政年份:
    2020
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Continuing Grant
High speed spin transport control with vector-field pulse shaping
采用矢量场脉冲整形的高速自旋输运控制
  • 批准号:
    18K03487
  • 财政年份:
    2018
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
PFI:AIR - TT: Pulse Shaping for Increased Conversion Efficiency in Extreme Ultraviolet Lithography Sources for the Fabrication of Next Generation Integrated Circuits
PFI:AIR - TT:脉冲整形可提高极紫外光刻源的转换效率,用于制造下一代集成电路
  • 批准号:
    1701238
  • 财政年份:
    2017
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Standard Grant
Mid-infrared pulse generation and shaping in engineered quasi-phase-matched nonlinear crystals for protein dynamics control
用于蛋白质动力学控制的工程准相位匹配非线性晶体中的中红外脉冲生成和整形
  • 批准号:
    17K05077
  • 财政年份:
    2017
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optoelectromechanical Interface in Hybrid Quantum Networks: Nonreciprocal State Conversion and Pulse Shaping
混合量子网络中的光机电接口:不可逆状态转换和脉冲整形
  • 批准号:
    1720501
  • 财政年份:
    2017
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Standard Grant
Controlling the temporal and spatial electric sheath field by the shaping of temporal and spatial phase of the laser pulse
通过激光脉冲时空相位的整形来控制时空电鞘场
  • 批准号:
    16K05506
  • 财政年份:
    2016
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spectral compression and time-to-frequency demultiplexing of entangled photons using pulse shaping and nonlinear optics
使用脉冲整形和非线性光学对纠缠光子进行光谱压缩和时频解复用
  • 批准号:
    459480-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Spectral compression and time-to-frequency demultiplexing of entangled photons using pulse shaping and nonlinear optics
使用脉冲整形和非线性光学对纠缠光子进行光谱压缩和时频解复用
  • 批准号:
    459480-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了