Theory of Liquid Crystals and Soft Materials

液晶与软材料理论

基本信息

  • 批准号:
    0096531
  • 负责人:
  • 金额:
    $ 32.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-03-15 至 2005-02-28
  • 项目状态:
    已结题

项目摘要

This award supports theoretical research and education the area of soft condensed matter. Research will be carried out on layered structures, nematic liquid crystals, twist grain boundary phases, nematic elastomers, and granular matter.The PI has demonstrated that layered structures, such as free standing smectic-C films, lyotropic smectics with dissolved proteins that form 2D lattices within their bilayer membranes, or DNA-lipid complexes with DNA intercalated between lipid bilayers can exhibit remarkable new "sliding phases" of matter. These phases are characterized by 2D power law behavior of correlations in spite of nonvanishing interlayer couplings. Many properties of these phases both in stacks of 2D classical systems and in arrays of 1D quantum wires are unexplored or incompletely understood and will be investigated by the PI.Nematic liquid crystals exhibit both line disclination and point hedgehog defects. Disclination loops can produce far-field director configurations equivalent to those of point hedgehogs and can carry hedgehog charge. The topology and homotopy group of these charge carrying loops is well understood. The distribution of hedgehog charge along a disclination loop is, however, largely unexplored. The PI will develop ways of quantifying hedgehog density, explore its energetic consequences, and study its effect on coarsening of defect patterns after a quench into the nematic phase from the isotropic phase. Twist-grain boundary (TGB) phases are liquid-crystal analogs of the Abrikosov vortex lattice phase of superconductors. At least three distinct TGBC phases in addition to the original TGBA phase have now been predicted or observed experimentally. Investigations of the energetic differences among these phases and the parameters that determine their stability, which are poorly understood, form an important part of the proposed program. Nematic elastomers, formed by crosslinking nematic polymers, combine the properties of rubber elasticity and orientational order of nematic liquid crystals. They have unusual elastic properties that have a number of potential applications, most notably as artificial muscles. A major part of the proposed program will be devoted to the study of the static and dynamic properties of nematic elastomers, including nematic elastomeric membranes and lyotropic nematic elastomers formed by dispersing colloidial rods in a swollen gel. When subjected to sufficiently strong shear stresses, granular matter becomes partially fluidized and exhibits flow properties that differ from those of a Newtonian fluid. The PI will investigate the flow of granular materials in various flow geometries using a generalization of the Chapman-Ensgog kinetic hydrodynamical equations with inelastic collisions in which effects of particle corrrelations are modeled near random close packing by a viscosity that diverges more rapidly with density than other transport coefficients. %%%This award supports research and education in the area of soft condensed matter. The term "soft materials" encompasses a wide spectrum of materials that includes complex fluids and liquid crystals and that are important to industry, as well as most biological matter. The PI will use these materials as an arena to explore fundamental concepts in condensed matter physics, such as broken symmetry, topological defects, and fluctuation destruction of long-range order in low-dimensional systems. This work helps improve our fundamental understanding of soft materials, and involves novel new phases of matter, "sliding phases," that occur in layered 'soft matter,' topological defects that occur in nematic liquid crystals, twist-grain boundary phases that occur in liquid crystals, nematic elastomers, and complex fluids. ***
该奖项支持软凝聚态领域的理论研究和教育。 研究将在层状结构、非线性液晶、扭曲晶界相、非线性弹性体和颗粒物质上进行。PI已经证明,层状结构,如独立的smectic-C膜,溶致smectics与溶解的蛋白质在其双层膜内形成2D晶格,或DNA-脂质复合物与插入脂质双层之间的DNA可以显示出显着的新的物质“滑动相”。这些阶段的特点是二维幂律行为的相关性,尽管非零层间耦合。 这些相在二维经典系统的堆叠和一维量子线阵列中的许多性质是未探索或不完全理解的,将由PI进行研究。向列型液晶表现出线向错和点刺猬缺陷。 向错环可以产生相当于点刺猬的远场指向矢配置,并且可以携带刺猬电荷。 这些电荷携带环的拓扑和同伦群是很好理解的。然而,刺猬电荷沿着向错环的分布在很大程度上是未探索的。 PI将开发量化刺猬密度的方法,探索其能量的后果,并研究其对淬火后从各向同性相到结晶相的缺陷图案粗化的影响。扭曲晶界(TGB)相是超导体的Abrikosov涡旋晶格相的液晶类似物。除了原始的TGBA相之外,现在已经预测或实验观察到至少三个不同的TGBC相。 这些阶段之间的能量差异和确定其稳定性的参数,这是知之甚少的调查,形成了拟议的计划的一个重要组成部分。向列型弹性体是由双链聚合物交联而成的,它结合了橡胶弹性和双链液晶取向有序性的特点,是一种联合收割机。 它们具有不同寻常的弹性,具有许多潜在的应用,最引人注目的是作为人造肌肉。 拟议的计划的一个主要部分将致力于研究的静态和动态性能的弹性体,包括弹性体膜和溶致弹性体的弹性体形成的胶体棒分散在一个溶胀的凝胶。当受到足够强的剪切应力时,颗粒物质部分流化,并表现出不同于牛顿流体的流动特性。 PI将调查在各种流动几何形状的颗粒状材料的流动,使用的Chapman-Ensgog动力学流体动力学方程与非弹性碰撞的推广,其中颗粒相关性的影响被建模为随机紧密堆积附近的粘度,发散更迅速地与密度比其他传输系数。该奖项支持软凝聚态领域的研究和教育。 术语“软材料”包括广泛的材料,包括复杂的流体和液晶,对工业以及大多数生物物质都很重要。PI将使用这些材料作为竞技场来探索凝聚态物理学中的基本概念,例如对称性破缺、拓扑缺陷和低维系统中长程有序的波动破坏。这项工作有助于提高我们对软材料的基本理解,并涉及新的物质相,“滑动相”,发生在层状“软物质”中,拓扑缺陷发生在液晶中,扭曲晶界相发生在液晶中,弹性体和复杂流体。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tom Lubensky其他文献

Tom Lubensky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tom Lubensky', 18)}}的其他基金

Topics in the Theory of Elastic Networks and Soft-Matter Physics
弹性网络理论和软物质物理专题
  • 批准号:
    1104707
  • 财政年份:
    2011
  • 资助金额:
    $ 32.7万
  • 项目类别:
    Continuing Grant
Topics in the Theories of Elasticity and of Liquid Crystals
弹性和液晶理论主题
  • 批准号:
    0804900
  • 财政年份:
    2008
  • 资助金额:
    $ 32.7万
  • 项目类别:
    Continuing Grant
Theories of Order and Dynamics in Soft Materials
软材料的秩序和动力学理论
  • 批准号:
    0404670
  • 财政年份:
    2004
  • 资助金额:
    $ 32.7万
  • 项目类别:
    Continuing Grant
Theory of Liquid Crystals and Related Materials
液晶及相关材料理论
  • 批准号:
    9730405
  • 财政年份:
    1998
  • 资助金额:
    $ 32.7万
  • 项目类别:
    Continuing Grant
Theory of Liquid Crystals and Related Materials
液晶及相关材料理论
  • 批准号:
    9423114
  • 财政年份:
    1995
  • 资助金额:
    $ 32.7万
  • 项目类别:
    Continuing Grant
Theory of Membranes and Complex Fluids
膜和复杂流体理论
  • 批准号:
    9122645
  • 财政年份:
    1992
  • 资助金额:
    $ 32.7万
  • 项目类别:
    Continuing Grant
Theoretical Studies of Liquid Crystals and Random Systems (Materials Research)
液晶和随机系统的理论研究(材料研究)
  • 批准号:
    8520272
  • 财政年份:
    1986
  • 资助金额:
    $ 32.7万
  • 项目类别:
    Continuing Grant

相似国自然基金

研究和探索一维范德华材料中的Luttinger liquid物理和摩尔超晶格物理
  • 批准号:
    12174335
  • 批准年份:
    2021
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目

相似海外基金

Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    $ 32.7万
  • 项目类别:
    Standard Grant
Lubrication by Lamellar Liquid Crystals - An in-situ investigation of thin films with Brewster Angle microscopy technology
层状液晶润滑 - 使用布鲁斯特角显微镜技术对薄膜进行原位研究
  • 批准号:
    EP/Y023277/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.7万
  • 项目类别:
    Research Grant
Hierarchically Ordered Structures by Frustration Design of Liquid Crystals and Its Functional Exploration
液晶的分层有序结构及其功能探索
  • 批准号:
    23H02038
  • 财政年份:
    2023
  • 资助金额:
    $ 32.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Conference: 2023 Liquid Crystals GRC and GRS: Learning from Nature to Transform Technology through Liquid Crystal Science
会议:2023 液晶 GRC 和 GRS:向自然学习,通过液晶科学转变技术
  • 批准号:
    2318184
  • 财政年份:
    2023
  • 资助金额:
    $ 32.7万
  • 项目类别:
    Standard Grant
Prediction of Phase Transition Behavior by Machine Learning to Interpret Molecular Arrangement and Application to Photofunctional Liquid Crystals
通过机器学习预测相变行为以解释分子排列及其在光功能液晶中的应用
  • 批准号:
    22KJ1964
  • 财政年份:
    2023
  • 资助金额:
    $ 32.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Flow-Induced Structures in Lyotropic Chromonic Liquid Crystals
溶致发色液晶中的流动诱导结构
  • 批准号:
    2245163
  • 财政年份:
    2023
  • 资助金额:
    $ 32.7万
  • 项目类别:
    Standard Grant
Active control of phase transition temperature of liquid crystals by light-stimulative deformation of phase-separated structure of polymers
通过光促聚合物相分离结构变形主动控制液晶相变温度
  • 批准号:
    23K03352
  • 财政年份:
    2023
  • 资助金额:
    $ 32.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
2023 Liquid Crystals Gordon Research Conference & Gordon Research Seminar
2023年液晶戈登研究会议
  • 批准号:
    10683604
  • 财政年份:
    2023
  • 资助金额:
    $ 32.7万
  • 项目类别:
CAREER: Chiral active nematic liquid crystals
职业:手性活性向列液晶
  • 批准号:
    2239551
  • 财政年份:
    2023
  • 资助金额:
    $ 32.7万
  • 项目类别:
    Continuing Grant
Mathematical Problems Modeling Nematic Liquid Crystals: from Macroscopic to Microscopic Theories
向列液晶建模的数学问题:从宏观到微观理论
  • 批准号:
    2307525
  • 财政年份:
    2023
  • 资助金额:
    $ 32.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了