Surface and Motion Capture for High Fidelity Synthesis of Digital Humans
用于数字人高保真合成的表面和运动捕捉
基本信息
- 批准号:0098005
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-01 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal #0098005Popovic, ZoranU of WashingtonWe propose a multi-layered approach to capturing and synthesizing realistic human shapes and motions. To capture the static shape of real humans, we will employ 3D scanning techniques including hierarchical light striping, simultaneous multi-striping, and photometric stereo. A feature-tracked motion capture system as well as 3D scanning techniques will generate motion data. The investigators will acquire this motion data at varying resolutions in order to drive the analysis of skeletal motion, body part deformation such as bulging due to flexing a muscle, and secondary motion such as leg vibrations that occur when stomping on the ground.This wealth of human data will then drive an analysis, modeling, and synthesis stage. The static scan data will be analyzed to construct the space of possible human shapes. This human shape model together with the body part motion capture and full-body motion capture will be used to construct a detailed kinematicmodel of the human body. Modeling human shape movement at such different levels of detail will allow control of the human motion on the coarse skeletal level while preserving the fine details such as muscle bulging. Furthermore, this multi-layered approach will enable selective replacement of different layers in the human model structure. For example, it will be possible to map the animated movement onto a different body scan and observe a different surface shape movement and creasing. The detailed kinematic human model will be further extended with a model of human dynamics by taking into account a number of physical properties of the human body such as muscle usage and mass distribution. This additional dynamic information provides a way to preserve the realism of motion even when the structure of motion is significantly modified. In addition, the investigators will extend the skeletal dynamic model with secondary motion simulations constructed to replicate the loose skin and tissue vibrations that occur in high-energy movements.The investigators will incorporate their work into new curriculum both at their university and in courses being offered to the professional community. This work will be folded into CDROM's that reach a wide audience, including the general public and a broad spectrum of high school students who may be considering careers in information technology. The results of the research will include complex databases of human shape and motion to be distributed to the general research community in order to encourage further research in this area.
建议#0098005Popovic,ZoranU华盛顿我们提出了一个多层次的方法来捕捉和合成逼真的人体形状和运动。 为了捕捉真实的人体的静态形状,我们将采用3D扫描技术,包括分层光条纹,同时多条纹,和光度立体。 一个特征跟踪的运动捕捉系统以及3D扫描技术将生成运动数据。 研究人员将以不同的分辨率获取这些运动数据,以推动骨骼运动、身体部位变形(如肌肉弯曲引起的隆起)以及次级运动(如踩踏地面时发生的腿部振动)的分析。这些丰富的人体数据将推动分析、建模和合成阶段。静态扫描数据将被分析,以构建可能的人体形状的空间。 该人体形状模型与身体部分运动捕捉和全身运动捕捉一起将被用于构建人体的详细运动学模型。 在这种不同的细节层次上对人体形状运动进行建模将允许在粗略的骨骼层次上控制人体运动,同时保留诸如肌肉膨胀的精细细节。 此外,这种多层方法将允许选择性地替换人体模型结构中的不同层。 例如,可以将动画运动映射到不同的身体扫描上,并观察不同的表面形状运动和折痕。 详细的人体运动学模型将进一步扩展为人体动力学模型,并考虑到人体的一些物理特性,如肌肉使用和质量分布。 这种附加的动态信息提供了一种即使在运动的结构被显著修改时也能保持运动的真实性的方法。 此外,研究人员将扩展骨骼动力学模型,构建二次运动模拟,以复制高能量运动中发生的松弛皮肤和组织振动。研究人员将把他们的工作纳入大学和专业团体的新课程。 这项工作将被折叠成光盘的,达到广泛的受众,包括公众和高中学生谁可能考虑在信息技术的职业生涯广泛。 研究结果将包括将分发给一般研究界的人体形状和运动的复杂数据库,以鼓励这一领域的进一步研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zoran Popovic其他文献
Brain points: a growth mindset incentive structure boosts persistence in an educational game
大脑要点:成长型思维激励结构可提高教育游戏的持久性
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Eleanor O'Rourke;K. Haimovitz;Christy Ballweber;C. Dweck;Zoran Popovic - 通讯作者:
Zoran Popovic
Percutaneous transarterial balloon dilatation of the mitral valve: five year experience.
经皮经动脉二尖瓣球囊扩张术:五年经验。
- DOI:
10.1136/hrt.67.2.185 - 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
U. Babic;S. Grujicic;Zoran Popovic;Z. Djurisic;P. Pejcic;Mihailo Vučinić - 通讯作者:
Mihailo Vučinić
Proactive Sensing for Improving Hand Pose Estimation
用于改进手部姿势估计的主动传感
- DOI:
10.1145/2858036.2858587 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Dun;Min Sun;Christy Ballweber;Seth Cooper;Zoran Popovic - 通讯作者:
Zoran Popovic
Generalizing locomotion style to new animals with inverse optimal regression
通过逆最优回归将运动方式推广到新动物
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:6.2
- 作者:
K. Wampler;Zoran Popovic;J. Popović - 通讯作者:
J. Popović
PROGNOSTIC VALUE OF ECHO-DOPPLER GUIDED AV DELAY OPTIMIZATION FOLLOWING CARDIAC RESYNCHRONIZATION THERAPY
- DOI:
10.1016/s0735-1097(16)31492-9 - 发表时间:
2016-04-05 - 期刊:
- 影响因子:
- 作者:
Srikanth Koneru;Zoran Popovic;Paul Cremer;Patrick Tchou;Bruce Wilkoff;Bruce Lindsay;Brian Griffin;Richard Grimm - 通讯作者:
Richard Grimm
Zoran Popovic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zoran Popovic', 18)}}的其他基金
Investigating the Effects of Computational Thinking Games on Mathematical and Scientific Practices
研究计算思维游戏对数学和科学实践的影响
- 批准号:
1639576 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CI-EN: Collaborative Research: Enhancement of Foldit, a Community Infrastructure Supporting Research on Knowledge Discovery Via Crowdsourcing in Computational Biology
CI-EN:协作研究:Foldit 的增强,Foldit 是一个支持计算生物学中通过众包进行知识发现研究的社区基础设施
- 批准号:
1625811 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
BIGDATA: F: BCC: Data driven optimization of classroom learning activities
BIGDATA:F:BCC:数据驱动的课堂学习活动优化
- 批准号:
1546510 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Eager: Large Scale Neuron Reconstruction through Development of Crowdsourced Reconstruction Experts
Eager:通过众包重建专家的发展进行大规模神经元重建
- 批准号:
1551063 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
HCC: Large: Collaborative Research: DNA Machine Builder: Creative molecular-machine design through mass-scale crowdsourcing
HCC:大型:协作研究:DNA Machine Builder:通过大规模众包进行创意分子机器设计
- 批准号:
1212940 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
HCC-Small: Protein Design Through Massively Distributed Video Games
HCC-Small:通过大规模分布式视频游戏进行蛋白质设计
- 批准号:
0811902 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Reusable, Realistic Motion Libraries for Computer Animation
职业:可重复使用的、逼真的计算机动画运动库
- 批准号:
0092970 - 财政年份:2001
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
Physically and biomechanically plausible human motion capture from video
从视频中捕捉物理和生物力学上合理的人体动作
- 批准号:
23KJ1915 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Study of Clinical Dental Education Using Motion Capture System
利用运动捕捉系统进行临床牙科教育的研究
- 批准号:
23K16219 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Norfolk's first dedicated Motion Capture Studio.
诺福克第一个专用动作捕捉工作室。
- 批准号:
10063567 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Development of safe personal protective equipment removal procedures using a motion capture system
使用动作捕捉系统开发安全的个人防护装备移除程序
- 批准号:
23K16411 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
cloudSLEAP: Maximizing accessibility to deep learning-based motion capture
cloudSLEAP:最大限度地提高基于深度学习的动作捕捉的可访问性
- 批准号:
10643661 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Smartphone Application-Based Markerless Motion Capture and Biomechanical Analysis of Athletes using a Deep Learning Model
使用深度学习模型对运动员进行基于智能手机应用的无标记动作捕捉和生物力学分析
- 批准号:
486618 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Studentship Programs
Modeling Diverse, Personalized and Expressive Animations for Virtual Characters through Motion Capture, Synthesis and Perception
通过动作捕捉、合成和感知为虚拟角色建模多样化、个性化和富有表现力的动画
- 批准号:
DGECR-2022-00415 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Launch Supplement
SBIR Phase II: 3D Markerless Motion Capture Technology For Gait Analysis
SBIR 第二阶段:用于步态分析的 3D 无标记运动捕捉技术
- 批准号:
2153138 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Cooperative Agreement
Modeling Diverse, Personalized and Expressive Animations for Virtual Characters through Motion Capture, Synthesis and Perception
通过动作捕捉、合成和感知为虚拟角色建模多样化、个性化和富有表现力的动画
- 批准号:
RGPIN-2022-04920 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Video and inertial (VIMU) motion capture systems for human movement assessment
用于人体运动评估的视频和惯性 (VIMU) 运动捕捉系统
- 批准号:
RGPIN-2021-04059 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual