Viscosity solution methods in partial differential equations and applications
偏微分方程中的粘度求解方法及应用
基本信息
- 批准号:0098565
- 负责人:
- 金额:$ 8.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposal concentrates on the analysis of certain classes of nonlinear partial differential equations and their applications. Linking them together is the notion of viscosity solution. Part of the proposal focuses on equations of Hamilton-Jacobi-Bellman (HJB) type that are related to optimal control of stochastic partial differential equations. The HJB equations associated with their control are equations in infinite dimensional spaces. The theory of such equations is not well developed. The principal investigator (PI) studies them in the project paying special attention to several equations related to problems of particular interest. One of such problems is optimal control of fluid flow that can be reformulated as optimal control of deterministic or stochastic Navier-Stokes equations. Another problem comes from mathematical finance and is related to option pricing. It includes analysis of infinite dimensional equivalent of ``Black-Scholes" equation and its nonlinear version, so called ``Black-Scholes-Barenblatt" equation. HJB equations in Hilbert (or Banach) spaces are the key to the dynamic programming analysis of optimal control problems of systems driven by partial differential equations.These HJB equations must be investigated from the point of view of generalized solutions. Viscosity solutions should provide the right approach to such equations and the proposed research should be an important ingredient in setting the stage for optimal control of infinite dimensional stochastic systems. The PI also proposes to investigate a class of fully nonlinear non-divergence form uniformly elliptic equations that includes generalizations of quasilinear equations and certain equations of geometric type, an important class in the elliptic theory. Such equations have not been studied systematically, especially when they are discontinuous in the spatial variable. The equations do not have classical solutions and the PI wants to extend the theory of so called L^p-viscosity solutions to this class. In particular the PI plans to investigate the question of regularity of solutions of such equations. This is a major open problem of elliptic partial differential equations and the PI proposes several possible new approaches to it that may give rise to new and interesting techniques.The notion of viscosity solution is one of the main tools of nonlinear partial differential equations and it has found applications in areas as diverse as optimal control, image processing, moving fronts and phase transitions, statistical mechanics, economics, mathematical finance. The motivation for studying some problems described in the proposal comes from optimal control,especially control of stochastic partial differential equations. Their theory is in a state of rapid development and is fueled by modeling questions coming from physics, population biology, chemistry, and economics and mathematical finance. The problem of optimal control of fluid flow is one of the basic engineering problems and has numerous applications in areas like combustion theory, aero and hydrodynamic control, Tokomak magnetic fusion, ocean and atmospheric prediction just to name a few. Problems related to the Musiela model of interest rates come from the modern theory of option pricing. The research of the project should contribute to the development of new directions in partial differential equations and should also have impact on the applied areas mentioned above.
该提案集中于分析某些类型的非线性偏微分方程组及其应用。将它们联系在一起的是粘性溶液的概念。该建议的一部分集中在与随机偏微分方程组的最优控制有关的哈密顿-雅可比-贝尔曼(HJB)型方程。与其控制相关的HJB方程是无限维空间中的方程。这种方程的理论还不是很发达。首席调查员(PI)在项目中研究它们,特别注意与特别感兴趣的问题有关的几个方程。其中一个问题是流体流动的最优控制,它可以重新表述为确定性或随机的Navier-Stokes方程的最优控制。另一个问题来自数学金融学,与期权定价有关。它包括对无穷维的“Black-Scholes”方程及其非线性形式,即所谓的“Black-Scholes-Barenblatt”方程的分析。Hilbert(或Banach)空间中的HJB方程是偏微分方程驱动系统最优控制问题动态规划分析的关键,必须从广义解的角度来研究这些HJB方程。粘性解应该为这类方程提供正确的方法,所提出的研究应该是为无限维随机系统的最优控制奠定基础的重要组成部分。PI还建议研究一类完全非线性的无散度形式的一致椭圆型方程,它包括拟线性方程和某些几何型方程的推广,这是椭圆理论中的一类重要类型。这类方程还没有被系统地研究过,特别是当它们在空间变量上不连续的时候。方程没有经典解,PI想要将所谓的L粘性解的理论推广到这类方程。特别是,PI计划调查这类方程解的正则性问题。粘性解的概念是非线性偏微分方程的主要工具之一,它在最优控制、图像处理、运动前沿和相变、统计力学、经济学、数学金融等领域都有广泛的应用。研究该方案中的一些问题的动机来自于最优控制,特别是随机偏微分方程的控制。他们的理论正处于快速发展的状态,并由来自物理、种群生物学、化学、经济学和数学金融的建模问题来推动。流体流动的最优控制问题是最基本的工程问题之一,在燃烧理论、气动和流体力学控制、托克马克磁聚变、海洋和大气预报等领域有着广泛的应用。与Musiela利率模型相关的问题来自现代期权定价理论。该项目的研究将有助于偏微分方程组的新方向的发展,也将对上述应用领域产生影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrzej Swiech其他文献
完全非線形方程式の両側障害問題に対するLp粘性解について
全非线性方程双面扰动问题的Lp粘性解
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Shigeaki Koike;Andrzej Swiech;Shota Tateyama;舘山翔太;舘山翔太 - 通讯作者:
舘山翔太
Weak Harnack inequality for fully nonlinear uniformly parabolic equations with unbounded ingredients and applications
具有无界成分的完全非线性均匀抛物线方程的弱 Harnack 不等式及其应用
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Shigeaki Koike;Andrzej Swiech;Shota Tateyama - 通讯作者:
Shota Tateyama
Andrzej Swiech的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrzej Swiech', 18)}}的其他基金
Calculus of Variations and Evolutive Systems on the Wasserstein Space
Wasserstein 空间上的变分和演化系统微积分
- 批准号:
0901070 - 财政年份:2009
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
Infinite dimensional analysis, viscosity solutions and applications
无限维分析、粘度解决方案和应用
- 批准号:
0856485 - 财政年份:2009
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Nonlinear Second-Order PDE in Infinite Dimensional Spaces and Optimal Control of Stochastic PDE
无限维空间中的非线性二阶偏微分方程与随机偏微分方程的最优控制
- 批准号:
0500270 - 财政年份:2005
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
相似国自然基金
Navigating Sustainability: Understanding Environm ent,Social and Governanc e Challenges and Solution s for Chinese Enterprises
in Pakistan's CPEC Framew
ork
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Horndeski理论中Randall-Sundrum型厚膜解的研究
- 批准号:11605127
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
N-体问题的中心构型及动力系统的分支理论
- 批准号:10601071
- 批准年份:2006
- 资助金额:10.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Multiplex In-Solution Protein Array (MISPA) for high throughput, quantitative, early profiling of pathogen-induced head and neck
多重溶液内蛋白质芯片 (MISPA) 用于对病原体引起的头颈部进行高通量、定量、早期分析
- 批准号:
10713928 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Tele-Sox: A Tele-Medicine solution based on wearables and gamification to prevent Venous thromboembolism in Oncology Geriatric Patients
Tele-Sox:基于可穿戴设备和游戏化的远程医疗解决方案,用于预防肿瘤老年患者的静脉血栓栓塞
- 批准号:
10547300 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Development of effective and accurate non-conventional solution methods for shape inverse problems: theory and numerics
开发有效且准确的形状反问题非常规求解方法:理论和数值
- 批准号:
23K13012 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Improvement of methods for searching vast solution spaces of tension-compression mixed form-finding problems of shells.
壳拉压混合找形问题大解空间搜索方法的改进。
- 批准号:
23K17784 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Towards an integrated analytics solution to creating a spatially-resolved single-cell multi-omics brain atlas
寻求集成分析解决方案来创建空间解析的单细胞多组学大脑图谱
- 批准号:
10724843 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
A novel cartridge-based sequencing solution for decentralized M. tuberculosis resistance detection
一种新型的基于盒的测序解决方案,用于分散结核分枝杆菌耐药性检测
- 批准号:
10719138 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Intrinsically Disordered Protein Structural Dynamics from Combined Solution and Gas-Phase Approaches
结合溶液和气相方法的本质无序蛋白质结构动力学
- 批准号:
10714896 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Retaining the diverse CANDLE cohort to advance ECHO Cohort solution-oriented research and identify early-life modifiable risk factors for obesity and mental health problems in children
保留多样化的 CANDLE 队列,以推进 ECHO 队列以解决方案为导向的研究,并确定儿童肥胖和心理健康问题的早期可改变风险因素
- 批准号:
10745100 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Chemoenzymatic Synthesis of Darobactin Antibiotics
Darobactin抗生素的化学酶法合成
- 批准号:
10592211 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别: