Nonlinear Second-Order PDE in Infinite Dimensional Spaces and Optimal Control of Stochastic PDE

无限维空间中的非线性二阶偏微分方程与随机偏微分方程的最优控制

基本信息

  • 批准号:
    0500270
  • 负责人:
  • 金额:
    $ 7.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-15 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

Nonlinear Second-order PDE in infinite dimensional spaces and optimal control of Stochastic PDE. Andrzej SwiechGeorgia Institute of TechnologyAbstractThe project concentrates on fully nonlinear second-order partial differential equations (PDE) in infinite dimensional Hilbert spaces. This is a relatively new area which has attracted a lot of attention in recent years. Primary examples of such equations are equations of Hamilton-Jacobi-Bellman (HJB) type that are associated with optimal control of stochastic PDE. Linear, so called Kolmogorov equations, that give an analytic description of infinite dimensional diffusions, also fall into this category and have been studied intensively, primarily in connection with equations coming from mathematical physics, fluid dynamics, option pricing, and population biology. The research of the project will focus on several fundamental issues related to the general theory of viscosity solutions in Hilbert spaces, together with applications and the study of some particularly important equations. The general questions include the development of tools like Perron's method, the method of half-relaxed limits, finite dimensional approximations, and the development of a viscosity solution theory for Kolmogorov and HJB equations associated with three dimensional stochastic Navier-Stokes (NS) equations. Applications will include optimal control of stochastic PDE (including stochastic NS equations), large deviations, and mathematical economics and finance. The research on HJB equations associated with stochastic NS equations may help answer some open questions about three dimensional stochastic NS equations themselves. Moreover fully nonlinear integro-PDE in Hilbert spaces that are connected to the emerging field of infinite dimensional jump-diffusion processes will also be investigated. This research will include the study of infinite dimensional integro-Black-Scholes and integro-Black-Scholes-Barenblatt equations related to option pricing in the jump diffusion version of the Musiela model of forward rates. Finally questions related to viscosity solutions of finite dimensional fully nonlinear stochastic PDE will be studied.Understanding the theory of second-order PDE in infinite dimensional Hilbert spaces is the first step in the development of the dynamic programming approach to optimal control of systems governed by stochastic PDE. This project contains a program of research that focuses on the development of new basic tools for such equations. It spans areas as diverse as partial differential equations, functional analysis and operator theory, probability, stochastic processes, stochastic PDE, mathematical finance, and control theory. The research will have significant impact on several areas of mathematics outside the field of nonlinear PDE like optimal control of stochastic PDE, large deviations, stochastic NS equations, and mathematical finance. Moreover it has a potential to stimulate research in related fields like engineering, atmospheric sciences, finance, andeconomics, in particular in fluid dynamics, and the theory of bondmarkets. It should also help attract and train graduate students and postdoctoral scholars.
无穷维空间中的非线性二阶偏微分方程与随机偏微分方程的最优控制。Andrzej Swiech佐治亚理工学院摘要该项目集中于无限维Hilbert空间中的完全非线性二阶偏微分方程(PDE)。这是一个相对较新的领域,近年来引起了广泛关注。这些方程的主要例子是与随机偏微分方程的最优控制相关的Hamilton-Jacobi-Bellman(HJB)型方程。线性的,所谓的柯尔莫哥洛夫方程,给出了无限维扩散的分析描述,也属于这一类,并已被深入研究,主要是与来自数学物理学,流体动力学,期权定价和人口生物学的方程。该项目的研究将集中在与希尔伯特空间中粘性解的一般理论有关的几个基本问题,以及一些特别重要的方程的应用和研究。一般的问题包括工具的发展,如Perron的方法,半松弛极限的方法,有限维近似,和发展的粘性解理论Kolmogorov和HJB方程与三维随机Navier-Stokes(NS)方程。应用将包括随机偏微分方程(包括随机NS方程),大偏差,数学经济学和金融的最优控制。对HJB方程和随机NS方程的研究有助于回答有关三维随机NS方程本身的一些问题。此外,还将研究Hilbert空间中与无穷维跳跃扩散过程的新兴场有关的完全非线性积分偏微分方程。本研究将包括研究无限维积分Black-Scholes和积分Black-Scholes-Barenblatt方程与远期利率的Musiela模型的跳跃扩散版本中的期权定价。最后,研究有限维完全非线性随机偏微分方程粘性解的相关问题,了解无限维Hilbert空间中二阶偏微分方程的理论是发展随机偏微分方程系统最优控制动态规划方法的第一步。该项目包含一个研究计划,重点是为这些方程开发新的基本工具。它跨越不同的领域,如偏微分方程,泛函分析和算子理论,概率论,随机过程,随机偏微分方程,数学金融和控制理论。该研究将对非线性偏微分方程领域以外的几个数学领域产生重大影响,如随机偏微分方程的最优控制,大偏差,随机NS方程和数学金融。此外,它有可能刺激相关领域的研究,如工程,大气科学,金融和经济学,特别是流体动力学和债券市场理论。它还应有助于吸引和培养研究生和博士后学者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrzej Swiech其他文献

完全非線形方程式の両側障害問題に対するLp粘性解について
全非线性方程双面扰动问题的Lp粘性解
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shigeaki Koike;Andrzej Swiech;Shota Tateyama;舘山翔太;舘山翔太
  • 通讯作者:
    舘山翔太
Weak Harnack inequality for fully nonlinear uniformly parabolic equations with unbounded ingredients and applications
具有无界成分的完全非线性均匀抛物线方程的弱 Harnack 不等式及其应用
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shigeaki Koike;Andrzej Swiech;Shota Tateyama
  • 通讯作者:
    Shota Tateyama

Andrzej Swiech的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrzej Swiech', 18)}}的其他基金

Calculus of Variations and Evolutive Systems on the Wasserstein Space
Wasserstein 空间上的变分和演化系统微积分
  • 批准号:
    0901070
  • 财政年份:
    2009
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Continuing Grant
Infinite dimensional analysis, viscosity solutions and applications
无限维分析、粘度解决方案和应用
  • 批准号:
    0856485
  • 财政年份:
    2009
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Standard Grant
Viscosity solution methods in partial differential equations and applications
偏微分方程中的粘度求解方法及应用
  • 批准号:
    0098565
  • 财政年份:
    2001
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Standard Grant
Viscosity Solutions and Applications
粘度解决方案和应用
  • 批准号:
    9706760
  • 财政年份:
    1997
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Standard Grant

相似海外基金

Ultra-high precision control of bosonic states in superconducting resonators with second-order nonlinear effects
具有二阶非线性效应的超导谐振器中玻色子态的超高精度控制
  • 批准号:
    22KJ0981
  • 财政年份:
    2023
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Second-order nonlinear sources of optical frequency-bin qudits
光学频率仓量子的二阶非线性源
  • 批准号:
    539878-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 7.8万
  • 项目类别:
    University Undergraduate Student Research Awards
Novel numerical methods for fully nonlinear second order elliptic and parabolic Monge-Ampere and Hamilton-Jacobi-Bellman equations
全非线性二阶椭圆和抛物线 Monge-Ampere 和 Hamilton-Jacobi-Bellman 方程的新颖数值方法
  • 批准号:
    1620168
  • 财政年份:
    2016
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Continuing Grant
Kinetic Study of Reactions at Functionalized Surfaces using Second-Order Nonlinear Optical Spectroscopy
使用二阶非线性光谱法研究功能化表面的反应动力学
  • 批准号:
    469808-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Methods and applications for nonlinear second-order cone and semidefinite programming problems
非线性二阶锥和半定规划问题的方法和应用
  • 批准号:
    26730012
  • 财政年份:
    2014
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Novel Discontinuous Galerkin Finite Element Methods for Second Order Fully Nonlinear Equations and High Frequency Wave Equations
二阶完全非线性方程和高频波动方程的新型间断伽辽金有限元方法
  • 批准号:
    1318486
  • 财政年份:
    2013
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Standard Grant
Second order nonlinear optical study of bunched and decorated atomic steps on single crystal surfaces
单晶表面上成束和装饰原子台阶的二阶非线性光学研究
  • 批准号:
    23540363
  • 财政年份:
    2011
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical Methods and Algorithms for Fully Nonlinear Second Order Evolution Equations with Applications
全非线性二阶演化方程的数值方法和算法及其应用
  • 批准号:
    1016173
  • 财政年份:
    2010
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Continuing Grant
Protein Structure Analysis by Second-order Nonlinear Spectroscopy
二阶非线性光谱法蛋白质结构分析
  • 批准号:
    22350014
  • 财政年份:
    2010
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Accurate measurements of the second-order nonlinear-optical coefficients of SiC
SiC二阶非线性光学系数的精确测量
  • 批准号:
    20560038
  • 财政年份:
    2008
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了