Simultaneous Vibration Confinement and Disturbance Rejection Through Electromechanical Tailoring of Piezoeletric Networks

通过压电网络的机电定制同时限制振动和抑制干扰

基本信息

  • 批准号:
    0099827
  • 负责人:
  • 金额:
    $ 17.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-15 至 2004-06-30
  • 项目状态:
    已结题

项目摘要

The overall project goal is to investigate a novel vibration control concept --simultaneous disturbance rejection and vibration confinement via piezoelectric network tailoring. The underlying principle for vibration confinement, which has attracted significant attention among vibration control researchers, is to alter the structural modes in such a manner that the corresponding modal components have much smaller amplitude in concerned areas than the remaining part of the structure. As a result, the vibration energy will be confined to regions that are less important. While vibration confinement is an attractive idea, some critical problems need to be addressed before the concept can be realized. The proposed new idea can solve these problems and greatly advance the state of the art. The research tasks include theory development, system analysis, and experimental investigation. The significance and impact of the proposed research will be: (a) With piezoelectric networks, it is possible to suppress vibration of the entire mechanical structure by confining the energy in the electrical circuitry part of the system, which cannot be achieved with the current confinement approach. (b) With the circuit elements as design variables, one can re-design the electrical system to achieve vibration confinement without changing the mechanical structure -- adjusting electrical circuits is much easier than modifying mechanical components. (c) With the circuit elements as additional design variables, the system design space can be significantly increased. This could allow the possibility of simultaneous left/right eigenstructure assignment. One can thus achieve disturbance rejection (through shaping the left eigenvector) together with energy confinement (shaping the right eigenvector) and end up with much better vibration control performance than that of the current practice. (d) The proposed effort will be the first to examine piezoelectric network tailoring for general complex structures with a systematic and rigorous approach.
本计画的目的是探讨一种新颖的振动控制概念--借由压电网路的剪裁,同时抑制干扰与限制振动。 振动约束的基本原理是改变结构的模态,使结构中相应的模态分量在相关区域的振幅比结构的其余部分小得多。 结果,振动能量将被限制在不太重要的区域。 虽然振动约束是一个有吸引力的想法,一些关键的问题需要解决之前,这个概念可以实现。 本文的研究工作包括理论发展、系统分析和实验研究。 拟议研究的意义和影响将是:(a)利用压电网络,可以通过将能量限制在系统的电路部分来抑制整个机械结构的振动,这是电流限制方法无法实现的。(b)以电路元件作为设计变量,可以重新设计电气系统,以实现振动限制,而无需改变机械结构-调整电路比修改机械部件容易得多。(c)通过将电路元件作为附加设计变量,可以显著增加系统设计空间。这可以允许同时左/右特征结构分配的可能性。因此,可以实现干扰抑制(通过成形左特征向量)以及能量约束(成形右特征向量),并最终获得比当前实践更好的振动控制性能。(d)这项拟议的工作将是第一次以系统和严格的方法研究针对一般复杂结构的压电网络定制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kon-Well Wang其他文献

Dynamic stability analysis of high speed axially moving bands with end curvatures
Discriminative Transition Sequences of Origami Metamaterials for Mechanologic
用于力学的折纸超材料的判别转变序列
  • DOI:
    10.1002/aisy.202200146
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Zuolin Liu;Hongbin Fang;Jian Xu;Kon-Well Wang
  • 通讯作者:
    Kon-Well Wang

Kon-Well Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kon-Well Wang', 18)}}的其他基金

Collaborative Research: Embedded Mechano-Intelligence for Soft Robotics
合作研究:软机器人的嵌入式机械智能
  • 批准号:
    2314560
  • 财政年份:
    2023
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Harnessing Complex Dynamics of Coupled Mechanical-Electrical System for an Improved Vibration Energy Harvesting
合作研究:理解和利用耦合机电系统的复杂动力学以改进振动能量收集
  • 批准号:
    1661568
  • 财政年份:
    2017
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Frequency Selective Structures for High Sensitivity/High Resolution Damage Identification via Impediographic Tomography
合作研究:通过阻抗成像技术进行高灵敏度/高分辨率损伤识别的频率选择结构
  • 批准号:
    1232436
  • 财政年份:
    2012
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
EFRI-BSBA: Learning from Plants -- Biologically-Inspired Multi-Functional Adaptive Structural Systems
EFRI-BSBA:向植物学习——受生物启发的多功能自适应结构系统
  • 批准号:
    0937323
  • 财政年份:
    2009
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
SST - Multifunctional Adaptive Piezoelectric Sensory System for Structural Damage Detection
SST - 用于结构损伤检测的多功能自适应压电传感系统
  • 批准号:
    0848166
  • 财政年份:
    2008
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
SST - Multifunctional Adaptive Piezoelectric Sensory System for Structural Damage Detection
SST - 用于结构损伤检测的多功能自适应压电传感系统
  • 批准号:
    0529029
  • 财政年份:
    2005
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
ITR: An Agent-Based Negotiation Framework for the Robust Design of Active-Passive Hybrid Piezoelectric Vibration Control Networks
ITR:基于代理的协商框架,用于主动-被动混合压电振动控制网络的鲁棒设计
  • 批准号:
    0218597
  • 财政年份:
    2003
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Continuing Grant

相似海外基金

Whole body vibrationによる慢性腎臓病の進展防止効果
全身振动对预防慢性肾脏病进展的作用
  • 批准号:
    24K14294
  • 财政年份:
    2024
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
I-Corps: Translation Potential of Portable Tuned Mass Dampers to Reduce Vibration Serviceability Issues in Architectural Structures
I-Corps:便携式调谐质量阻尼器减少建筑结构振动适用性问题的转化潜力
  • 批准号:
    2407141
  • 财政年份:
    2024
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
ERI: System Tautochronic Pendulum Vibration Absorbers for Next-Generation Propulsion Systems and Other Machinery
ERI:用于下一代推进系统和其他机械的系统等时摆减震器
  • 批准号:
    2347632
  • 财政年份:
    2024
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
CAREER: A Universal Microsystem-based Vibration Energy Harvester
职业:基于通用微系统的振动能量收集器
  • 批准号:
    2237086
  • 财政年份:
    2023
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
Investigation of long-term suppression and Sustainability of sleep bruxism by a vibration splint
振动夹板对睡眠磨牙症的长期抑制和可持续性研究
  • 批准号:
    23K09258
  • 财政年份:
    2023
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishment of Tonic Vibration Reflex and Kinesthetic Illusion Models and Application to Medical and Welfare Systems
强直振动反射和动觉错觉模型的建立及其在医疗和福利系统中的应用
  • 批准号:
    23H01380
  • 财政年份:
    2023
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Vibration experiment technique combined with soft robotics for quality evaluation of fruits and vegetables
振动实验技术结合软机器人技术用于果蔬品质评价
  • 批准号:
    23K13277
  • 财政年份:
    2023
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigation of modified water vibration by surrounding molecules via operand nonlinear optical response
通过操作数非线性光学响应研究周围分子改变的水振动
  • 批准号:
    23K19257
  • 财政年份:
    2023
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Fundamental research on multifunctional structure that enables vibration attenuation and structural diagnosis with no power supply
无电源减振及结构诊断多功能结构基础研究
  • 批准号:
    23H01366
  • 财政年份:
    2023
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How Orb-Weaver Spiders Use Leg posture to Modulate Vibration Sensing of Prey on Webs
圆织蜘蛛如何利用腿部姿势来调节网上猎物的振动感知
  • 批准号:
    2310707
  • 财政年份:
    2023
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了