EFRI-BSBA: Learning from Plants -- Biologically-Inspired Multi-Functional Adaptive Structural Systems

EFRI-BSBA:向植物学习——受生物启发的多功能自适应结构系统

基本信息

项目摘要

EFRI-BSBA: Learning from Plants -- Bio-Inspired Multi-Functional Adaptive Structural Systems PI Name: Kon-Well WangInstitution: University of Michigan, Ann Arbor MI.Proposal No: 0937323The research project is a collaborative interdisciplinary study to create a transformative multifunctional adaptive engineering structure concept through investigating the characteristics of plants. The investigators propose to explore new bio-actuation/bio-sensing ideas building upon innovations inspired by the mechanical, chemical, and electrical properties of plant cells. It has been observed that plant nastic actuations (e.g., rapid plant motions of Venus Flytrap or Mimosa) occur due to directional changes in plant cell shape facilitated by internal hydrostatic pressure, achieving actuations with large force and stroke. It is also known that plants can adapt to the direction/magnitude of external loads and damage, and reconfigure or heal themselves via cell growth. The ability to concurrently achieve distributed large stroke/force actuation, significant property change, self-sensing, reconfiguration, and self-healing has long been the dream of the adaptive structures researchers. The bio-sensing/ actuation features of plants can provide engineers with valuable knowledge and opportunities for interdisciplinary intellectual advancements that could lead to a new paradigm of adaptive structures and impact the joint field of bioscience and engineering significantly. The intellectual merit of this project is that the multidisciplinary research team will push forward advancements in various disciplines at their interfaces (plant and cell biology, materials and manufacturing, chemical transport, mechatronics, and structural dynamics and controls) and utilize the synergy to create a significant leap in fundamental knowledge for future adaptive materials and structures. By physiological characterization of how plant cell wall organization influences cell shape changes during rapid plant motions, the team will investigate the wall fibrillar networks and the orientations of plant cells that can achieve the most effective nastic actions. Building upon and advancing from the investigators? study of the promising fluidic flexible matrix composite (F2MC) concept, F2MC cells will be created that emulate functions of plant cells based on our improved understanding of the cell wall response to pressure, loading, and damage. Advanced nanofiber networking capability will be explored for the F2MC materials. Inspired by the plant cell membrane transport phenomenon, a microstructure will be developed that generates pressure to actuate the F2MC cells, senses and regulates pressure, detects damage, and heals. Through structural analysis and control synthesis, F2MC cells will be assembled to form a hypercellular topology resembling a circulatory network for global actuation and structural control, energy harvesting, thermal management, and self healing. The outcome of this project is expected to impact the society broadly and significantly. The findings could become the building blocks of future mechanical, civil, transportation, and aerospace systems with enhanced functionality and performance. The next generation of air, marine, and land vehicles, intelligent machines, and smart infrastructure will benefit greatly from the knowledge discovery. The investigators will integrate the emerging frontier research with educational programs to achieve broad impact on learning at various levels, contributing to the workforce training on multidisciplinary systems crossing biology and engineering.
EFRI-BSBA:从植物中学习--生物启发的多功能自适应结构系统PI姓名:Kon-Well Wang机构:密歇根大学,安阿伯MI.提案号:0937323该研究项目是一个跨学科的合作研究,通过调查植物的特性来创建一个变革性的多功能自适应工程结构概念。 研究人员建议探索新的生物驱动/生物传感理念,该理念建立在植物细胞的机械、化学和电学特性的启发下。 已经观察到,植物性致动(例如,金星捕蝇草或含羞草的快速植物运动)是由于植物细胞形状的方向变化而发生的,该方向变化由内部流体静压力促进,从而实现具有大的力和冲程的致动。 还已知植物可以适应外部负荷和损伤的方向/大小,并通过细胞生长重新配置或修复自身。 同时实现分布式大行程/力驱动、显著的性能变化、自感知、重构和自修复的能力一直是自适应结构研究者的梦想。 植物的生物传感/致动特性可以为工程师提供宝贵的知识和跨学科知识进步的机会,这可能导致自适应结构的新范式,并对生物科学和工程的联合领域产生重大影响。该项目的智力价值在于,多学科研究团队将推动各个学科在其接口(植物和细胞生物学,材料和制造,化学运输,机电一体化以及结构动力学和控制)方面的进步,并利用协同作用为未来的自适应材料和结构创造基础知识的重大飞跃。 通过对植物细胞壁组织如何影响植物快速运动过程中细胞形状变化的生理学表征,研究小组将研究细胞壁纤维网络和植物细胞的方向,以实现最有效的nastic作用。 在调查人员的基础上发展和进步?研究的前景流体柔性基质复合材料(F2 MC)的概念,F2 MC细胞将创建模仿植物细胞的功能,基于我们的细胞壁响应的压力,负载和损伤的改进的理解。 将为F2 MC材料探索先进的可扩展网络能力。 受植物细胞膜运输现象的启发,将开发一种微结构,产生压力以驱动F2 MC细胞,感知和调节压力,检测损伤并愈合。 通过结构分析和控制合成,F2 MC细胞将被组装成一个超细胞拓扑结构,类似于一个循环网络,用于全局驱动和结构控制、能量收集、热管理和自我修复。 预计该项目的成果将对社会产生广泛而重大的影响。 这些发现可能成为未来机械,民用,运输和航空航天系统的基石,具有增强的功能和性能。 下一代空中、海上和陆地车辆、智能机器和智能基础设施将从知识发现中受益匪浅。 研究人员将把新兴的前沿研究与教育计划相结合,对各级学习产生广泛影响,为跨生物学和工程学的多学科系统的劳动力培训做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kon-Well Wang其他文献

Dynamic stability analysis of high speed axially moving bands with end curvatures
Discriminative Transition Sequences of Origami Metamaterials for Mechanologic
用于力学的折纸超材料的判别转变序列
  • DOI:
    10.1002/aisy.202200146
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Zuolin Liu;Hongbin Fang;Jian Xu;Kon-Well Wang
  • 通讯作者:
    Kon-Well Wang

Kon-Well Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kon-Well Wang', 18)}}的其他基金

Collaborative Research: Embedded Mechano-Intelligence for Soft Robotics
合作研究:软机器人的嵌入式机械智能
  • 批准号:
    2314560
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Harnessing Complex Dynamics of Coupled Mechanical-Electrical System for an Improved Vibration Energy Harvesting
合作研究:理解和利用耦合机电系统的复杂动力学以改进振动能量收集
  • 批准号:
    1661568
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Collaborative Research: Frequency Selective Structures for High Sensitivity/High Resolution Damage Identification via Impediographic Tomography
合作研究:通过阻抗成像技术进行高灵敏度/高分辨率损伤识别的频率选择结构
  • 批准号:
    1232436
  • 财政年份:
    2012
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
SST - Multifunctional Adaptive Piezoelectric Sensory System for Structural Damage Detection
SST - 用于结构损伤检测的多功能自适应压电传感系统
  • 批准号:
    0848166
  • 财政年份:
    2008
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
SST - Multifunctional Adaptive Piezoelectric Sensory System for Structural Damage Detection
SST - 用于结构损伤检测的多功能自适应压电传感系统
  • 批准号:
    0529029
  • 财政年份:
    2005
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
ITR: An Agent-Based Negotiation Framework for the Robust Design of Active-Passive Hybrid Piezoelectric Vibration Control Networks
ITR:基于代理的协商框架,用于主动-被动混合压电振动控制网络的鲁棒设计
  • 批准号:
    0218597
  • 财政年份:
    2003
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
Simultaneous Vibration Confinement and Disturbance Rejection Through Electromechanical Tailoring of Piezoeletric Networks
通过压电网络的机电定制同时限制振动和抑制干扰
  • 批准号:
    0099827
  • 财政年份:
    2001
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant

相似海外基金

US-Japan Workshop on Bioinspired Sensing and Bioinspired Actuation (BSBA) Technologies; Hawaii; March 18 and 19, 2011
美日仿生传感和仿生驱动 (BSBA) 技术研讨会;
  • 批准号:
    1112579
  • 财政年份:
    2011
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BSBA: Complex microsystem networks inspired by internal insect physiology
EFRI BSBA:受昆虫内部生理学启发的复杂微系统网络
  • 批准号:
    0938047
  • 财政年份:
    2010
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BSBA: Biology Inspired Intelligent Micro Optical Imaging Systems
EFRI-BSBA:受生物学启发的智能微光学成像系统
  • 批准号:
    0937847
  • 财政年份:
    2009
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BSBA Integration of Dynamic Sensing and Actuating of Neural Microcircuits
EFRI-BSBA 动态传感与神经微电路驱动的集成
  • 批准号:
    0937848
  • 财政年份:
    2009
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BSBA: Engineering Synthetic Mimics of DNA-Protein Recognition Systems
EFRI-BSBA:DNA-蛋白质识别系统的工程合成模拟
  • 批准号:
    0938019
  • 财政年份:
    2009
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BSBA: Nanoactuation and Sensing of Neural Function for Engineering Future Biomimetic Retinal Implants and Therapies
EFRI-BSBA:神经功能的纳米驱动和传感,用于工程未来仿生视网膜植入物和治疗
  • 批准号:
    0938072
  • 财政年份:
    2009
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI- BSBA: Novel Microsystems for Manipulation and Analysis of Immune Cells
EFRI- BSBA:用于免疫细胞操作和分析的新型微系统
  • 批准号:
    0937997
  • 财政年份:
    2009
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BSBA: Second Window
EFRI-BSBA:第二个窗口
  • 批准号:
    0937710
  • 财政年份:
    2009
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BSBA: Photonic Technique for Sensing and Understanding Subcellular Structures at Nanoscale
EFRI-BSBA:用于传感和理解纳米级亚细胞结构的光子技术
  • 批准号:
    0937987
  • 财政年份:
    2009
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BSBA: Multifunctional Materials and Devices for Distributed Actuation and Sensing
EFRI-BSBA:用于分布式驱动和传感的多功能材料和设备
  • 批准号:
    0937985
  • 财政年份:
    2009
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了