CAREER: A Universal Microsystem-based Vibration Energy Harvester

职业:基于通用微系统的振动能量收集器

基本信息

  • 批准号:
    2237086
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2028-05-31
  • 项目状态:
    未结题

项目摘要

This project is jointly funded by the Electrical, Communications and Cyber Systems (ECCS) and the Established Program to Stimulate Competitive Research (EPSCoR). With the growing demand for the Internet of Things, Cyber Physical Systems, and Smart Buildings there will be a significant increase in wireless sensor networks, all of which will require power to operate. However, batteries have a limited lifetime, therefore there is a need to create a self-sustaining system that can harvest energy from the ambient environment without the need of batteries. Vibration-based energy harvesters have the advantage of functioning 24/7 and can be applied to almost all applications. Microsystems-based energy harvesters have advantages such as small-scale and low cost, but there are numerous challenges which have limited their success. This study will investigate methods to solve those challenges and overcome the limitations. The goal of this study is to create a universal low-frequency microsystem vibration energy harvesting system to power these wireless sensor networks. The investigated methods to solve these challenges have potential to be applied to other microsystem applications to enhance sensor or actuating performance in the future. The project will impact society as well as the scientific community. In addition, this project aims to increase awareness of microsystems through an interdisciplinary STEM education outreach program directed at undergraduate and K-12 students. The program will develop outreach events to promote microsystems and STEM education to underrepresented students. The study of microsystems is interdisciplinary consisting of all STEM disciplines. The educational goal of this project is to increase awareness of microsystems and how they impact our daily lives to inspire the next generation of scientists and engineers. Microsystem vibration energy harvesters have been extensively investigated over the past decade but limitations due to their micro-scale and mechanisms of actions have limited the systems from progressing past the lab environment. There are four grand challenges that currently limit their use: 1) narrow frequency bandwidth, 2) lack of frequency tunability, 3) low power density, and 4) reliability. This study will investigate and develop novel designs and microfabrication methods to address these challenges. The research objective of this project is to enhance functionality of a low frequency low acceleration piezoelectric microsystem energy harvester by combining novel integration and actuation mechanisms to i) widen the bandwidth, ii) perform wide range active/passive frequency tuning, and iii) enhance power density using novel functional thin film material structures. Each component will be designed and characterized individually and then integrated together to develop a complete universal system that can overcome the current challenges associated with micro-scale vibration energy harvesters. Non-linear dynamics mechanisms to widen the bandwidth without significant decrease in power using monolithically integrated movable proof-mass will be investigated. This will result in a passive wide bandwidth system that does not require any additional power consumption. Frequency tuning will be investigated using a novel mass load distribution method that can be passive to increase manufacturability of the devices and promote batch fabrication advantages of microsystems to obtain a universal low-frequency system for multiple applications (250 Hz). An active tuning mechanism based on mass load distribution with a targeted frequency range of 200 Hz with a resolution of 1 Hz will also be investigated. Power density will be enhanced by developing new polarity controlled piezoelectric structures by enhancing material properties of ternary nitride thin films. Integration of these methods to create a monolithic all-in-one system requires novel microfabrication methods which will be developed and can be applied to future microsystem applications beyond energy harvesters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由电气,通信和网络系统(ECCS)和刺激竞争研究的既定计划(EPSCoR)共同资助。随着对物联网、网络物理系统和智能建筑的需求不断增长,无线传感器网络将大幅增加,所有这些都需要电力来运行。然而,电池具有有限的寿命,因此需要创建一种可以在不需要电池的情况下从周围环境中收集能量的自我维持系统。基于振动的能量采集器具有24/7全天候运行的优势,几乎可以应用于所有应用。基于微系统的能量采集器具有小规模和低成本等优点,但存在许多限制其成功的挑战。本研究将探讨解决这些挑战和克服局限性的方法。本研究的目标是建立一个通用的低频微系统振动能量收集系统,为这些无线传感器网络供电。解决这些挑战的研究方法有可能被应用到其他微系统应用,以提高传感器或致动性能的未来。该项目将影响社会以及科学界。此外,该项目旨在通过针对本科生和K-12学生的跨学科STEM教育推广计划来提高对微系统的认识。该计划将开发外展活动,以促进微系统和STEM教育,以代表性不足的学生。微系统的研究是跨学科的,包括所有STEM学科。该项目的教育目标是提高对微系统的认识,以及它们如何影响我们的日常生活,以激励下一代科学家和工程师。在过去的十年中,微系统振动能量采集器已被广泛研究,但由于其微观尺度和作用机制的限制,限制了系统在实验室环境中的发展。目前有四个巨大的挑战限制了它们的用途:1)窄频率带宽,2)缺乏频率可调谐性,3)低功率密度,以及4)可靠性。本研究将研究和开发新的设计和微加工方法,以应对这些挑战。本项目的研究目标是通过结合新型集成和驱动机制来增强低频低加速度压电微系统能量采集器的功能,以i)拓宽带宽,ii)执行宽范围的有源/无源频率调谐,iii)使用新型功能薄膜材料结构提高功率密度。每个组件将单独设计和表征,然后集成在一起,以开发一个完整的通用系统,可以克服当前与微尺度振动能量采集器相关的挑战。非线性动力学机制,以扩大带宽,而不显着降低功率使用单片集成的可移动的检测质量将进行调查。这将导致不需要任何额外功耗的无源宽带系统。频率调谐将使用一种新的质量负载分配方法,可以被动地增加设备的可制造性,并促进微系统的批量制造优势,以获得一个通用的低频系统的多种应用(250 Hz)进行研究。还将研究基于质量负载分布的主动调谐机制,目标频率范围为200 Hz,分辨率为1 Hz。通过提高三元氮化物薄膜的材料性能,开发新的极性可控压电结构,将有助于提高功率密度。集成这些方法以创建单片一体化系统需要新的微制造方法,这些方法将被开发并可应用于未来的微系统应用,而不仅仅是能量采集器。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhancing Power Density through Electrode Configuration for Piezomems Energy Harvester
Passively Tuning the Resonant Frequency of Kinetic Energy Harvesters Using Distributed Loaded Proof Mass
  • DOI:
    10.3390/app14010156
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Adhikari,Rahul;Jackson,Nathan
  • 通讯作者:
    Jackson,Nathan
Passive Frequency Tuning Using Liquid Distributed Load
使用液体分布负载进行无源频率调谐
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathan Jackson其他文献

Comparative Electrode Design for Piezoelectric MEMS Kinetic Energy Harvester
压电 MEMS 动能收集器的比较电极设计
Characterization of confocal sputtered molybdenum thin films for aluminum nitride growth
  • DOI:
    10.1016/j.tsf.2019.137657
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Aseem Poudyal;Nathan Jackson
  • 通讯作者:
    Nathan Jackson
Investigation of droplet size distribution for vibrating mesh atomizers
  • DOI:
    10.1016/j.jaerosci.2022.106072
  • 发表时间:
    2022-11-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Pallavi Sharma;Mohammed Quazi;Irma Rocio Vazquez;Nathan Jackson
  • 通讯作者:
    Nathan Jackson
Maternal Transcriptomic Profiles and Phenotypes of Childhood Wheeze in the Breathe-Wellbeing, Environment, Lifestyle and Lung function (B-WELL-Mom) study
在“呼吸健康、环境、生活方式与肺功能(B-WELL-Mom)”研究中儿童喘息的母亲转录组图谱和表型
  • DOI:
    10.1016/j.jaci.2023.11.736
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    11.200
  • 作者:
    Madeline Schutt;Nathan Jackson;Danielle Stevens;Leonoardo Barrera;Emily Golbeck;Matthew Davis;Jennifer Weck;Akila Subramaniam;Joseph Biggio;William Grobman;Seth Sherman;Zhen Chen;Pauline Mendola;Max Seibold;Rajesh Kumar
  • 通讯作者:
    Rajesh Kumar
Wireless Accelerometers for Early Detection of Restenosis
  • DOI:
    10.1016/j.proeng.2011.12.140
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nathan Jackson;Rosemary O’Keeffe;Robert O’Leary;Mike O’Neill;Micheál Moriarty;Alan Mathewson
  • 通讯作者:
    Alan Mathewson

Nathan Jackson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nathan Jackson', 18)}}的其他基金

Applied Graduate STEM Education through an Innovative Hands-On Industrial Work Experience
通过创新的实践工业工作经验进行应用型研究生 STEM 教育
  • 批准号:
    2325367
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
  • 批准号:
    2903298
  • 财政年份:
    2027
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
CageTag: Caged Theranostics as a Universal Platform for Nuclear Medicine
CageTag:笼式治疗诊断学作为核医学的通用平台
  • 批准号:
    EP/V055836/2
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
  • 批准号:
    2340089
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NGO-Prosecutorial Complex in Universal Jurisdiction Cases: Structure and Consequences for Justice and Public Knowledge about Human Rights Violations
普遍管辖权案件中的非政府组织-检察复合体:正义的结构和后果以及公众对侵犯人权行为的了解
  • 批准号:
    2314061
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Universal approaches in random matrix theory
随机矩阵理论中的通用方法
  • 批准号:
    24K06766
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Universal Crystal Growth Capsule and Novel Wafer Dicing Tool for In-Space Manufacturing
SBIR 第一阶段:用于太空制造的通用晶体生长舱和新型晶圆切割工具
  • 批准号:
    2419346
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Universal Model Selection Criteria for Scientific Machine Learning
科学机器学习的通用模型选择标准
  • 批准号:
    DE240100144
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Early Career Researcher Award
Universal Legal Identity and the Sustainable Development Goals
普遍法律身份和可持续发展目标
  • 批准号:
    DE240100636
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Early Career Researcher Award
Integrating universal and tailored approaches across the continuum of mental health and substance use supports: Supporting the implementation and coordination of the Icelandic Prevention Model and Integrated Youth Services
在心理健康和药物滥用支持的连续过程中整合通用和量身定制的方法:支持冰岛预防模式和综合青年服务的实施和协调
  • 批准号:
    477940
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Salary Programs
Rubber DUQ: Flexible Dynamic Universal Quantum programming
Rubber DUQ:灵活动态通用量子编程
  • 批准号:
    EP/X025551/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了