Perturbation Methods for Nonlinear Control of Lagrangian Systems

拉格朗日系统非线性控制的摄动方法

基本信息

项目摘要

The principal goal of this proposed work is to develop proper orthogonal decomposition (POD) as a viable complementary alternative to conventional experimental modal analysis for vibration systems.Proper orthogonal decomposition has been used for obtaining "energy modes," as opposed to normal modes, from sensed system outputs. Proper orthogonal decomposition can indeed yield normal modes in lightly damped systems if the mass distribution is known. This research aims to overcome the requirement of a known mass distribution, estimate modal frequencies and damping factors and associate them with the correct mode, expand the applicability to arbitrary excitations, and compare the performance of POD with classical experimental modal analysis. Auxiliary objectives are the extension from 1-D distributed-parameter systems to 2-D systems, and the application of POD to multi-modal nonlinear responses. The research approach will involve theoretical analyses, numerical simulations, and experiments. Simulations and experiments will be used to test theoretical developments on simple systems with analytical solutions, and also on systems with complicated geometries. If POD were sufficiently developed, it would significantly enhance our ability to extract vibration parameters as a complement to traditional modal analysis. Experimental vibration facilities are globally prevalent, geared for industrial problems of noise, performance, and safety. Even if POD were used in a fraction of such laboratories, the total POD activity would be quite large. It will be particularly advantageous to systems for which sensed inputs are not available. The project is geared for a doctoral student's research program. The project will also involve an undergraduate researcher for applying POD and conventional modal analysis on experimental systems
这项工作的主要目标是开发适当的正交分解(POD),作为振动系统传统实验模态分析的可行补充替代方案。适当的正交分解已用于从感测系统输出中获取“能量模式”,而不是正常模式。 如果质量分布已知,适当的正交分解确实可以在轻阻尼系统中产生正常模式。本研究旨在克服已知质量分布的要求,估计模态频率和阻尼因子并将其与正确的模态相关联,扩展对任意激励的适用性,并将 POD 的性能与经典实验模态分析进行比较。 辅助目标是从一维分布参数系统到二维系统的扩展,以及 POD 在多模态非线性响应中的应用。研究方法将涉及理论分析、数值模拟和实验。 模拟和实验将用于测试具有解析解的简单系统以及具有复杂几何形状的系统的理论发展。 如果 POD 得到充分发展,它将显着增强我们提取振动参数的能力,作为传统模态分析的补充。 实验振动设施在全球范围内普遍存在,旨在解决噪声、性能和安全等工业问题。 即使 POD 在此类实验室的一小部分中使用,总 POD 活性也将相当大。 这对于无法获得感测输入的系统尤其有利。 该项目适合博士生的研究计划。 该项目还将邀请一名本科生研究人员在实验系统上应用 POD 和传统模态分析

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francesco Bullo其他文献

A Complete Algorithm for Searchlight Scheduling
探照灯调度的完整算法
Sensor and Actuator Placement for Linear Systems Based on H2 and H∞ Optimization
基于 H2 和 H∞ 优化的线性系统的传感器和执行器放置
  • DOI:
    10.1002/wcm.622
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Francesco Bullo;P. Antsaklis;Thomas Parisini;Ioannis Paschalidis;R. D. Braatz;Maria Prandini;U. Münz;M. Pfister;P. Wolfrum;D. E. Rivera;S. Deshpande
  • 通讯作者:
    S. Deshpande
Dynamic Vehicle Routing for Robotic Systems Organizers and Lecturers
机器人系统组织者和讲师的动态车辆路线
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Francesco Bullo;Emilio Frazzoli;Marco Pavone;K. Savla;Stephen L. Smith
  • 通讯作者:
    Stephen L. Smith
Learning Neural Contracting Dynamics: Extended Linearization and Global Guarantees
学习神经契约动力学:扩展线性化和全局保证
  • DOI:
    10.48550/arxiv.2402.08090
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sean Jaffe;A. Davydov;Deniz Lapsekili;Ambuj K. Singh;Francesco Bullo
  • 通讯作者:
    Francesco Bullo
Exponential Stability of Parametric Optimization-Based Controllers via Lur’e Contractivity
基于 Lur’e 收缩性的参数优化控制器的指数稳定性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3
  • 作者:
    A. Davydov;Francesco Bullo
  • 通讯作者:
    Francesco Bullo

Francesco Bullo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francesco Bullo', 18)}}的其他基金

CPS: Medium: Collaborative Research: The Cyber-Physical Challenges of Transient Stability and Security in Power Grids
CPS:中:协作研究:电网暂态稳定性和安全的网络物理挑战
  • 批准号:
    1135819
  • 财政年份:
    2011
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Dynamic Routing and Robotic Coordination for Oceanographic Adaptive Sampling
CPS:中:协作研究:海洋自适应采样的动态路由和机器人协调
  • 批准号:
    1035917
  • 财政年份:
    2010
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Standard Grant
Collaborative Research: CSR-EHCS(EHS), TM: Distributed Sensing via Robust Consensus on Manifolds
合作研究:CSR-EHCS(EHS),TM:通过流形上的鲁棒共识进行分布式传感
  • 批准号:
    0834446
  • 财政年份:
    2008
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Standard Grant
Distributed Illumination Problems for Visually-Guided Agents
视觉引导代理的分布式照明问题
  • 批准号:
    0626457
  • 财政年份:
    2006
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Standard Grant
SENSORS: Cooperative Robotics and Geometric Optimization for Mobile Sensors
传感器:移动传感器的协作机器人和几何优化
  • 批准号:
    0525543
  • 财政年份:
    2005
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Continuing Grant
Collaborative Research: Kinematic Reductions of Underactuated Mechanical Systems
合作研究:欠驱动机械系统的运动学简化
  • 批准号:
    0442041
  • 财政年份:
    2004
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Continuing grant
SENSORS: Cooperative Robotics and Geometric Optimization for Mobile Sensors
传感器:移动传感器的协作机器人和几何优化
  • 批准号:
    0330008
  • 财政年份:
    2003
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Continuing Grant
Collaborative Research: Kinematic Reductions of Underactuated Mechanical Systems
合作研究:欠驱动机械系统的运动学简化
  • 批准号:
    0301423
  • 财政年份:
    2003
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Continuing Grant
Algorithmic and Differential-Geometric Trajectory Design
算法和微分几何轨迹设计
  • 批准号:
    0118146
  • 财政年份:
    2001
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Continuing Grant
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
  • 批准号:
    2338704
  • 财政年份:
    2024
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Continuing Grant
Variational Optimal Transport Methods for Nonlinear Filtering
非线性滤波的变分最优传输方法
  • 批准号:
    2318977
  • 财政年份:
    2023
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Standard Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
  • 批准号:
    2109949
  • 财政年份:
    2023
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Standard Grant
Nonlinear logarithmic difference operators and their application to structure-preserving numerical methods
非线性对数差分算子及其在保结构数值方法中的应用
  • 批准号:
    23K17655
  • 财政年份:
    2023
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Thermal noise reduction in next-generation cryogenic gravitational wave telescopes through nonlinear physical model fusion data-driven methods
通过非线性物理模型融合数据驱动方法降低下一代低温引力波望远镜的热噪声
  • 批准号:
    23K03437
  • 财政年份:
    2023
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Data-Collection Algorithms and Data-Driven Control Methods for Guaranteed Stabilization of Nonlinear Systems with Uncertain Equilibria and Orbits
开发数据收集算法和数据驱动控制方法,以保证具有不确定平衡和轨道的非线性系统的稳定性
  • 批准号:
    23K03913
  • 财政年份:
    2023
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
  • 批准号:
    2309687
  • 财政年份:
    2023
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Standard Grant
Acceleration, Complexity and Implementation of Active Set Methods for Large-scale Sparse Nonlinear Optimization
大规模稀疏非线性优化的活跃集方法的加速、复杂性和实现
  • 批准号:
    2309549
  • 财政年份:
    2023
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Standard Grant
Data driven inversion methods and image reconstruction for nonlinear media
非线性介质的数据驱动反演方法和图像重建
  • 批准号:
    2308200
  • 财政年份:
    2023
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了