Dynamics of Partially Hyperbolic Systems

部分双曲系统的动力学

基本信息

  • 批准号:
    0100416
  • 负责人:
  • 金额:
    $ 8.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-08-01 至 2005-07-31
  • 项目状态:
    已结题

项目摘要

This project will investigate the dynamics of partially hyperbolic systems.It is hoped to improve the recent theorem of Pugh and Shub by weakening thecenter bunching hypothesis and adapting the proof so that it applies to thepointwise (or Brazilian) version of partial hyperbolicity rather than morestringent uniform assumptions made by Pugh and Shub. I also hope to extendthe classes of partially hyperbolic maps within which the hypotheses of thePugh-Shub theorem are known to hold generically by studying compact groupextensions of the compact group extensions already studied by myself andWilkinson. In addition I plan to continue my work with Paternain onmagnetic flows and to collaborate with Hasselblatt and Wilkinson on astudy of Lyapunov exponents for geodesic flows.This project will study the dynamics of partially hyperbolic systems.A differentiable dynamical system consists of a differentiable manifold whichrepresents the possible states of the system and a differentiable map of themanifold to itself which represents the evolution of the system from itscurrent state to its next state. A basic mechanism which tends to producechaotic behavior is for the derivative of the map to stretch vectors insome directions and to shrink vectors in the complementary directions.Such behavior is called hyperbolicity. The system is called partiallyhyperbolic if in addition to the expanding and contracting directionsthat are stretched and shrunk there is a third direction which is stretchedless than the expanding direction and shrunk less than the contracting.It has long been suspected that most partially hyperbolic systems shouldhave the same chaotic behavior as fully hyperbolic systems.In the 1990's the work of Pugh and Shub (in collaboration with Graysonand Wilkinson) has made it possible to prove this in considerable generality.I aim to extend their work, by weakening the hypotheses in their main theoremand studying a number of particular examples of partially hyperbolic systems.
本项目将研究部分双曲系统的动力学,希望通过削弱中心聚束假设和修改证明来改进Pugh和Shub最近的定理,使其适用于部分双曲的逐点(或巴西)版本,而不是Pugh和Shub所做的更严格的一致假设。我还希望通过研究我和威尔金森已经研究过的紧群扩展的紧群扩展来扩展部分双曲映射的类,其中Pugh-Shub定理的假设是已知的。此外,我计划继续与Paternain合作研究磁流,并与Hasselblatt和威尔金森合作研究测地线流的李雅普诺夫指数,这个项目将研究部分双曲系统的动力学,可微动力系统由一个表示系统可能状态的可微流形和一个表示系统从其当前演化的流形到其自身的可微映射组成到下一个国家。产生混沌行为的一个基本机制是映射的导数在某些方向上拉伸向量而在互补方向上收缩向量,这种行为称为双曲性。如果除了拉伸和收缩的膨胀和收缩方向之外,还有第三个方向,其拉伸小于膨胀方向,收缩小于收缩方向,则该系统称为部分双曲系统。长期以来,人们一直怀疑大多数部分双曲系统应该具有与完全双曲系统相同的混乱行为。20世纪90年代,Pugh和Shub的工作(与Graysonand威尔金森合作)已经有可能证明这一点在相当大的普适性。我的目标是扩展他们的工作,通过削弱假设在其主要定理和研究一些特定的例子,部分双曲系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Keith Burns其他文献

THU035 - Prophylaxis of withdrawal syndrome decreases mortality in patients with alcohol-associated hepatitis
THU035 - 预防戒断综合征可降低酒精性肝炎患者的死亡率
  • DOI:
    10.1016/s0168-8278(22)00655-9
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
    33.000
  • 作者:
    David Marti-Aguado;Concepción Gómez;Amir Gougol;Dalia Morales Arraez;Alejandro Jiménez Sosa;Anjara Hernandez;Claudia Pujol;Edilmar Alvarado-Tapias;Ares Villagrasa;Meritxell Ventura Cots;Ana Clemente;Abo Zed Abdelrhman;Keith Burns;Aditi Bawa;Haritha Gandicheruvu;Vikrant Rachakonda;Ramon Bataller
  • 通讯作者:
    Ramon Bataller
Anosov magnetic flows, critical values and topological entropy
阿诺索夫磁流、临界值和拓扑熵
  • DOI:
    10.1088/0951-7715/15/2/305
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Keith Burns;Gabriel P Paternain
  • 通讯作者:
    Gabriel P Paternain
Stable ergodicity of skew products ( Ergodicité stable des produits croisés )
倾斜产品的稳定遍历性 (Ergodicité stable des produits croisés)
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keith Burns;A. Wilkinson
  • 通讯作者:
    A. Wilkinson
Average Pace and Horizontal Chords
  • DOI:
    10.1007/s00283-017-9713-2
  • 发表时间:
    2017-11-22
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Keith Burns;Orit Davidovich;Diana Davis
  • 通讯作者:
    Diana Davis

Keith Burns的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Keith Burns', 18)}}的其他基金

Conference on "Global Dynamics Beyond Uniform Hyperbolicity"
“超越统一双曲性的全球动力学”会议
  • 批准号:
    1314157
  • 财政年份:
    2013
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Standard Grant
Dynamics of partially hyperbolic systems and geodesic flows
部分双曲系统和测地流的动力学
  • 批准号:
    1001959
  • 财政年份:
    2010
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
Research in dynamics
动力学研究
  • 批准号:
    0701140
  • 财政年份:
    2007
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
Dynamics of Partially Hyperbolic Systems
部分双曲系统的动力学
  • 批准号:
    0408704
  • 财政年份:
    2004
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geodesic Flows On Manifolds With No Conjugate Points and Related Topics
数学科学:无共轭点流形上的测地流及相关主题
  • 批准号:
    8896198
  • 财政年份:
    1988
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geodesic Flows On Manifolds With No Conjugate Points and Related Topics
数学科学:无共轭点流形上的测地流及相关主题
  • 批准号:
    8702803
  • 财政年份:
    1987
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Standard Grant

相似国自然基金

基于分数阶衍射的PT及Partially-PT对称非线性系统中的空间孤子研究
  • 批准号:
    11764022
  • 批准年份:
    2017
  • 资助金额:
    33.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Partially Hyperbolic Diffeomorphisms, Foliations, and Flows
部分双曲微分同胚、叶状结构和流动
  • 批准号:
    2054909
  • 财政年份:
    2021
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Standard Grant
wild behavior of partially hyperbolic dynamics and its smoothness
部分双曲动力学的狂野行为及其平滑度
  • 批准号:
    18K03276
  • 财政年份:
    2018
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The shape of chaos: geometric advances in partially hyperbolic dynamics
混沌的形状:部分双曲动力学的几何进展
  • 批准号:
    DP180101385
  • 财政年份:
    2018
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Discovery Projects
Distribution properties of hyperbolic and partially hyperbolic systems
双曲和部分双曲系统的分布特性
  • 批准号:
    1936868
  • 财政年份:
    2017
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Studentship
New Directions in Partially Hyperbolic Dynamics
部分双曲动力学的新方向
  • 批准号:
    1664719
  • 财政年份:
    2017
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
New Directions in Partially Hyperbolic Dynamics
部分双曲动力学的新方向
  • 批准号:
    1823150
  • 财政年份:
    2017
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
Cocycles over hyperbolic and partially hyperbolic systems
双曲和部分双曲系统上的余循环
  • 批准号:
    1301693
  • 财政年份:
    2013
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Standard Grant
Absolute continuity of foliations and ergodicity for smooth measure preserving partially hyperbolic dynamics
叶状结构的绝对连续性和遍历性,用于保持部分双曲动力学的平滑测量
  • 批准号:
    24740105
  • 财政年份:
    2012
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Relation between hyperbolic structure of partially hyperbolic systems and ergodic limit theorems
部分双曲系统的双曲结构与遍历极限定理之间的关系
  • 批准号:
    23740136
  • 财政年份:
    2011
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Dynamics of partially hyperbolic systems and geodesic flows
部分双曲系统和测地流的动力学
  • 批准号:
    1001959
  • 财政年份:
    2010
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了