New Directions in Partially Hyperbolic Dynamics
部分双曲动力学的新方向
基本信息
- 批准号:1823150
- 负责人:
- 金额:$ 11.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-18 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project seeks to gain a deeper understanding of chaotic dynamical systems. Chaotic dynamics is abundant in the real world and appears throughout sciences and engineering. It can appear in simple mechanical mechanisms such as a double pendulum or in complicated natural phenomena such as convection currents in the atmosphere. The study of such naturally arising examples is extremely challenging and we are very far from a good understanding of them. The partially hyperbolic dynamical systems that will be studied in this project are simplified mathematical models of chaotic dynamical systems that arise in nature. The emphasis of the project will be on a wide range of problems which are new in the field or have received only marginal attention in the past. Potentially, this research may have impacts in physics, biology, chemistry, engineering and other areas where chaotic dynamical systems arise.Anosov and partially hyperbolic diffeomorphisms are the prime examples of chaotic dynamical systems. In the past decades the study of ergodic and chaotic properties in partially hyperbolic dynamics has flourished, while geometric aspects haven't received as much attention. This will be a wide-ranging program to develop geometric structure theory for partially hyperbolic dynamics. The program includes: (1) further development of the Anosov bundle theory; (2) development of topological and global structural stability for partially hyperbolic diffeomorphisms; (3) initiation of the smooth conjugacy program for 3-dimensional partially hyperbolic diffeomorphisms. Further, the project will to bring partially hyperbolic vision beyond the dominated splitting paradigm and take first steps into the realm of homological and coarse hyperbolicity. Finally, the project will expand work on new examples in partially hyperbolic dynamics. New examples have intrinsic value and can be used as additional ground for the structure theory to be applied and tested. The project will use a diverse blend of dynamics and three and higher dimensional topology.
该项目旨在更深入地了解混沌动力系统。 混沌动力学广泛存在于真实的世界中,并贯穿于科学和工程领域。 它可以出现在简单的机械机制,如双摆或复杂的自然现象,如大气中的对流。 对这些自然产生的例子的研究极具挑战性,我们离很好地理解它们还很远。 本项目将研究的部分双曲动力系统是自然界中出现的混沌动力系统的简化数学模型。 该项目的重点将放在该领域的新问题或过去只受到很少注意的广泛问题上。 混沌动力系统的研究对物理、生物、化学、工程等领域都有潜在的影响,Anosov和部分双曲同态是混沌动力系统的典型例子。在过去的几十年中,部分双曲动力学的遍历性和混沌性的研究已经蓬勃发展,而几何方面没有得到太多的关注。 这将是一个广泛的计划,以发展几何结构理论的部分双曲动力学。 该方案包括:(1)进一步发展了Anosov丛理论;(2)发展了部分双曲同态的拓扑稳定性和整体结构稳定性;(3)提出了三维部分双曲同态的光滑共轭程序。 此外,该项目将使部分双曲视觉超越占主导地位的分裂范式,并采取第一步进入同调和粗双曲的领域。最后,该项目将扩展部分双曲动力学的新示例。新的例子具有内在价值,可以作为应用和检验结构理论的额外依据。该项目将使用多种动力学和三维及更高维度的拓扑结构。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Abelian Livshits theorems and geometric applications
- DOI:
- 发表时间:2020-04
- 期刊:
- 影响因子:0
- 作者:A. Gogolev;F. R. Hertz
- 通讯作者:A. Gogolev;F. R. Hertz
Surgery for partially hyperbolic dynamical systems II. Blow-up of a complex curve
部分双曲动力系统的手术 II。
- DOI:10.1007/s00209-020-02681-8
- 发表时间:2021
- 期刊:
- 影响因子:0.8
- 作者:Gogolev, Andrey;Hertz, Federico Rodriguez
- 通讯作者:Hertz, Federico Rodriguez
Local rigidity of Lyapunov spectrum for toral automorphisms
环自同构的李亚普诺夫谱的局部刚性
- DOI:10.1007/s11856-020-2028-6
- 发表时间:2020
- 期刊:
- 影响因子:1
- 作者:Gogolev, Andrey;Kalinin, Boris;Sadovskaya, Victoria
- 通讯作者:Sadovskaya, Victoria
SMOOTH RIGIDITY FOR VERY NON-ALGEBRAIC EXPANDING MAPS
非常非代数展开图的平滑刚性
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:2.6
- 作者:Gogolev, A;Rodriguez Hertz, F.
- 通讯作者:Rodriguez Hertz, F.
Centralizers of partially hyperbolic diffeomorphisms in dimension 3
3 维部分双曲微分同胚的中心化子
- DOI:10.3934/dcds.2021044
- 发表时间:2021
- 期刊:
- 影响因子:1.1
- 作者:Barthelmé, Thomas;Gogolev, Andrey
- 通讯作者:Gogolev, Andrey
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andriy Gogolyev其他文献
Andriy Gogolyev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andriy Gogolyev', 18)}}的其他基金
Rigidity in Rank One Hyperbolic Dynamics and Related Topics
一阶双曲动力学中的刚性及相关主题
- 批准号:
1955564 - 财政年份:2020
- 资助金额:
$ 11.74万 - 项目类别:
Standard Grant
New Directions in Partially Hyperbolic Dynamics
部分双曲动力学的新方向
- 批准号:
1664719 - 财政年份:2017
- 资助金额:
$ 11.74万 - 项目类别:
Continuing Grant
Classification problems in hyperbolic dynamics
双曲动力学中的分类问题
- 批准号:
1266282 - 财政年份:2013
- 资助金额:
$ 11.74万 - 项目类别:
Standard Grant
相似海外基金
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
- 批准号:
EP/Z000688/1 - 财政年份:2024
- 资助金额:
$ 11.74万 - 项目类别:
Research Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 11.74万 - 项目类别:
Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
$ 11.74万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342245 - 财政年份:2024
- 资助金额:
$ 11.74万 - 项目类别:
Standard Grant
Manchester Metropolitan University and Future Directions CIC KTP 23_24 R3
曼彻斯特城市大学和未来方向 CIC KTP 23_24 R3
- 批准号:
10083223 - 财政年份:2024
- 资助金额:
$ 11.74万 - 项目类别:
Knowledge Transfer Network
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306379 - 财政年份:2024
- 资助金额:
$ 11.74万 - 项目类别:
Standard Grant
Conference: Future Directions for Mathematics Education Research, Policy, and Practice
会议:数学教育研究、政策和实践的未来方向
- 批准号:
2342550 - 财政年份:2024
- 资助金额:
$ 11.74万 - 项目类别:
Standard Grant
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
- 批准号:
2339274 - 财政年份:2024
- 资助金额:
$ 11.74万 - 项目类别:
Continuing Grant
Participant Support for Biomechanists Outlining New Directions Workshop (USA and Italy: BOND); Naples, Italy; 24-27 September 2023
生物力学专家概述新方向研讨会的参与者支持(美国和意大利:BOND);
- 批准号:
2314385 - 财政年份:2023
- 资助金额:
$ 11.74万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327010 - 财政年份:2023
- 资助金额:
$ 11.74万 - 项目类别:
Standard Grant