Groebner Fans in Combinatorics, Representation Theory and Commutative Algebra: Theory and Computation
格罗布纳的组合学、表示论和交换代数爱好者:理论与计算
基本信息
- 批准号:0401047
- 负责人:
- 金额:$ 10.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2007-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for award DMS-0401047 of Thomas: Groebner basis theory is today a central theoretical and computationaltool in algebraic geometry and commutative algebra with applicationsin myriad fields such as computer science, optimization, robotics,statistics, and computer modeling. The Groebner fan of an ideal ormodule is the decomposition of the space of weight vectors that induceGroebner base, such that each cone in the fan indexes a distinctGroebner basis. This project describes four problems fromcombinatorics, optimization, representation theory and algebraicgeometry that revolve around Groebner fans. The first projectinvestigates the complexity, geometry and homological properties ofinitial ideals of toric ideals. Answers to these questions haveimplications in integer programming and on the computation of toricGroebner bases which themselves have several applications. The next examines the variation of weight vectors in Kalai's theory ofalgebraic shifting for simplicial complexes. The third projectstudies the polyhedral geometry of moduli of resentations of the McKayquiver which (partially) resolve singularities that arise ingeneralized McKay correspondence. The last goal is to develop asoftware package for computing Groebner fans of arbitrary polynomialideals. Applications include the computation of tropical varieties andthe study of orbit closures and degenerations of representations offinite dimensional algebras.The proposed work will employ tools from combinatorics, discretegeometry and optimization to solve problems from commutative algebra,representation theory and algebraic geometry. All projects have astrong computational component that aims at effective algorithms andserves as a laboratory for uncovering new structure theorems. Thecollaborations include three graduate students and three current orrecent postdocs.
摘要奖DMS-0401047托马斯:Groebner基础理论是今天的一个中心理论和计算工具,在代数几何和交换代数与applicationin无数领域,如计算机科学,优化,机器人,统计和计算机建模。理想或模的Groebner扇是引入Groebner基的权向量空间的分解,使得扇中的每个锥索引不同的Groebner基。这个项目描述了围绕Groebner风扇的组合学、最优化、表示论和代数几何四个问题。第一个项目研究复曲面理想的有限理想的复杂性、几何和同调性质。这些问题的答案haveimplications在整数规划和计算toricGroebner基地本身有几个应用。其次考察了Kalai的单纯复形代数移位理论中权向量的变化。 第三个项目研究的多面体几何的模量的表现的McKay的(部分)解决奇异性所产生的广义McKay对应。最后一个目标是开发一个计算任意多项式理想的Groebner扇的软件包。 应用包括热带簇的计算和轨道闭合的研究和退化的表示有限维代数。拟议的工作将采用组合学,离散几何和优化的工具来解决问题,从交换代数,表示论和代数几何。 所有项目都有一个强大的计算组件,旨在有效的算法,并作为一个实验室,揭示新的结构定理。这些合作包括三名研究生和三名现任或近期的博士后。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rekha Thomas其他文献
Small Chvátal Rank
- DOI:
10.1007/s10107-010-0370-x - 发表时间:
2010-05-14 - 期刊:
- 影响因子:2.500
- 作者:
Tristram Bogart;Annie Raymond;Rekha Thomas - 通讯作者:
Rekha Thomas
Development of a Near-Infrared Spectroscopy (NIRS)–Based Characterization Approach for Inherent Powder Blend Heterogeneity in Direct Compression Formulations
- DOI:
10.1208/s12248-022-00775-1 - 发表时间:
2022-12-08 - 期刊:
- 影响因子:3.700
- 作者:
Zhenqi Shi;Kallakuri Suparna Rao;Prajwal Thool;Robert Kuhn;Rekha Thomas;Sharyl Rich;Chen Mao - 通讯作者:
Chen Mao
Lifts of convex sets in optimization
- DOI:
10.1007/s10107-015-0940-z - 发表时间:
2015-08-22 - 期刊:
- 影响因子:2.500
- 作者:
Volker Kaibel;Rekha Thomas - 通讯作者:
Rekha Thomas
Rekha Thomas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rekha Thomas', 18)}}的其他基金
Sums of Squares Polynomials in Optimization, Combinatorics, and Computer Vision
优化、组合学和计算机视觉中的多项式平方和
- 批准号:
1719538 - 财政年份:2017
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Polynomial Optimization and Convex Algebraic Geometry
多项式优化和凸代数几何
- 批准号:
1115293 - 财政年份:2011
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Semidefinite optimization and convex algebraic geometry
FRG:协作研究:半定优化和凸代数几何
- 批准号:
0757371 - 财政年份:2008
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Combinatorial Commutative Algebra and Integer Programming
组合交换代数和整数规划
- 批准号:
0100141 - 财政年份:2001
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
相似海外基金
Exploring LGBT+ Fans' Experiences in English Football Stadia
探索 LGBT 球迷在英国足球场的体验
- 批准号:
2854564 - 财政年份:2023
- 资助金额:
$ 10.5万 - 项目类别:
Studentship
Transforming ownership in the music industry - empowering artists and fans
改变音乐行业的所有权——赋予艺术家和粉丝权力
- 批准号:
10069872 - 财政年份:2023
- 资助金额:
$ 10.5万 - 项目类别:
Collaborative R&D
PhD Research Studentship in Airframe Aerodynamics and Control using Electric Ducted Fans.
使用电管道风扇进行机身空气动力学和控制的博士研究奖学金。
- 批准号:
2643345 - 财政年份:2022
- 资助金额:
$ 10.5万 - 项目类别:
Studentship
The Study on Characteristics of Enthusiastic Fans and Their Impact on Market Outcomes
狂热粉丝的特征及其对市场结果的影响研究
- 批准号:
22K01773 - 财政年份:2022
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
International research on fans' identity disguise and cover-up through their cultural practices of "2.5-D" culture
粉丝通过“2.5-D”文化实践进行身份伪装和掩盖的国际研究
- 批准号:
22K01876 - 财政年份:2022
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MCA: Multi-scale considerations of climatic signatures on debris flows and alluvial fans
MCA:泥石流和冲积扇气候特征的多尺度考虑
- 批准号:
2127476 - 财政年份:2021
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Convex Bodies, Fans and Algebraic Geometry
凸体、扇形和代数几何
- 批准号:
RGPIN-2017-05251 - 财政年份:2021
- 资助金额:
$ 10.5万 - 项目类别:
Discovery Grants Program - Individual
Investigating ancient sediment fans on Mars
研究火星上的古代沉积扇
- 批准号:
2612943 - 财政年份:2021
- 资助金额:
$ 10.5万 - 项目类别:
Studentship
Assessing the hydrologic importance of alluvial fans to mountain peatlands.
评估冲积扇对山地泥炭地的水文重要性。
- 批准号:
553757-2020 - 财政年份:2020
- 资助金额:
$ 10.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's