Studies in noncommutative dynamics and multivariable operator theory
非交换动力学和多变量算子理论研究
基本信息
- 批准号:0100487
- 负责人:
- 金额:$ 18.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-01 至 2006-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAversonThis work relates to two loosely connected areas, a) the theory of one-parameter groups of automorphisms of the algebra of all operators on a Hilbert space which posses a certain causal structure, and b) the theory of commuting n-tuples of operators acting on a Hilbert space. We have been attempting to understand the nature of noncommutative dynamics for many years, and our approach recently has been based on the theory of E_0-semigroups. There has been exciting recent progress on several fronts, the full implications of which are still being sorted out. In multivariable operator theory, we have introduced a "curvature" invariant which is somewhat analogous to the integral of curvature of a Riemannian manifold. We have shown that it is an integer in many cases by relating it to another invariant, the Euler characteristic of a certain finitely generated module. However, the key formula is valid only in certain cases, and we are now in the process of relating the curvature invariant to a more subtle integer invariant, essentially the index of a "Dirac operator" that can be associated with the given n-tuple of operators.In quantum theory the observable quantities are represented by operators. The algebra of operators differs sharply from the algebra of numbers because the result of multiplying two operators A and B depends on the order in which they are multiplied: AB is not the same as BA. This failure of the commutativity law has profound consequences, the most basic one being the uncertainty principle. The flow of time in quantum theory is represented by certain transformations, each of which moves operators in subtle ways, and the dynamics of quantum theory is the study of such groups of transformations. This "noncommutative dynamics" is very different from the commutative dynamics of classical physics. Our approach is based on a certain notion of causality, which involves the technical idea of semigroups of endomorphisms. Recent progress has been very encouraging - with the discovery of new connections with probability theory, in which one may now pass back and forth between noncommutative flows of time and certain random processes which can be thought of as "off-white" noise, in that they are close to white noise, but not exactly white noise. In a different but related direction, our work on sets of (commuting) operators establishes significant connections between sets of operators and fundamental geometric ideas such as curvature. At issue is a numerical invariant for sets of operators. While this invariant appears to be a real number capable of taking on any value, it is in fact an integer. What integer? The answer that appears to be emerging now is that this number is the numerical index of a certain Dirac operator. There appear to be significant connections with other parts of mathematics, including Riemannian geometry and algebraic geometry.
AbstractAverson这项工作涉及到两个松散连接的领域,一个)理论的一个参数组的自同构代数的所有运营商在希尔伯特空间,其中包括一定的因果结构,和B)理论的交换n元组的运营商作用于希尔伯特空间。 多年来,我们一直试图理解非对易动力学的性质,最近我们的方法是基于E_0-半群理论。 最近在几个方面取得了令人振奋的进展,其全部影响仍在整理之中。 在多变量算子理论中,我们引入了一个“曲率”不变量,它有点类似于黎曼流形的曲率积分。 我们已经证明,它是一个整数在许多情况下,通过将它与另一个不变量,欧拉特征的某个欧拉生成的模块。 然而,这个关键公式只在某些情况下有效,我们现在正在将曲率不变量与一个更微妙的整数不变量联系起来,本质上是一个“狄拉克算子”的索引,它可以与给定的n元组算子相关联。在量子理论中,可观测量由算子表示。 算子代数与数代数有很大的不同,因为两个算子A和B相乘的结果取决于它们相乘的顺序:AB与BA不同。 对易性定律的失败有着深刻的后果,最基本的后果就是测不准原理。 量子理论中的时间流是由某些变换来表示的,每一个变换都以微妙的方式移动算子,量子理论的动力学就是对这些变换群的研究。 这种“非对易动力学”与经典物理学中的对易动力学有很大不同。 我们的方法是基于一定的因果关系的概念,其中涉及的技术思想半群的自同态。 最近的进展是非常令人鼓舞的--发现了与概率论的新联系,在这种联系中,人们现在可以在非对易的时间流和某些可以被认为是“非白色”噪声的随机过程之间来回穿梭,因为它们接近于白色噪声,但不完全是白色噪声。 在一个不同但相关的方向上,我们对(交换)算子集的研究在算子集和基本几何思想(如曲率)之间建立了重要的联系。 问题是一个数值不变量的运营商集。 虽然这个不变量看起来是一个可以取任何值的真实的数,但它实际上是一个整数。 什么整数? 现在出现的答案是,这个数是某个狄拉克算子的数值指数。 它似乎与数学的其他部分有着重要的联系,包括黎曼几何和代数几何。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Arveson其他文献
Pure E 0-Semigroups and Absorbing States
- DOI:
10.1007/s002200050128 - 发表时间:
1997-07-01 - 期刊:
- 影响因子:2.600
- 作者:
William Arveson - 通讯作者:
William Arveson
Quantization and the uniqueness of invariant structures
- DOI:
10.1007/bf01218641 - 发表时间:
1984-03-01 - 期刊:
- 影响因子:2.600
- 作者:
William Arveson - 通讯作者:
William Arveson
Infinite tensor products of completely positive semigroups
- DOI:
10.1007/pl00001369 - 发表时间:
2001-06-01 - 期刊:
- 影响因子:1.200
- 作者:
William Arveson;Geoffrey Price - 通讯作者:
Geoffrey Price
Interactions in Noncommutative Dynamics
- DOI:
10.1007/s002200050802 - 发表时间:
2000-04-01 - 期刊:
- 影响因子:2.600
- 作者:
William Arveson - 通讯作者:
William Arveson
William Arveson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Arveson', 18)}}的其他基金
Invariants for Completely Positive Maps and Multivariable Operator Theory
完全正映射的不变量和多变量算子理论
- 批准号:
9802474 - 财政年份:1998
- 资助金额:
$ 18.78万 - 项目类别:
Continuing Grant
Mathematical Sciences: Semigroup of Endomorphisms of Operator Algebras
数学科学:算子代数自同态半群
- 批准号:
9500291 - 财政年份:1995
- 资助金额:
$ 18.78万 - 项目类别:
Continuing Grant
Mathematical Sciences: Studies in Semigroups of Endomorphisms, Operator Algebras, and Numerical Quantum Mechanics
数学科学:自同态半群、算子代数和数值量子力学的研究
- 批准号:
9212893 - 财政年份:1992
- 资助金额:
$ 18.78万 - 项目类别:
Continuing Grant
Mathematical Sciences: Studies in Automorphism Groups and Operator Algebras
数学科学:自同构群和算子代数的研究
- 批准号:
8912362 - 财政年份:1989
- 资助金额:
$ 18.78万 - 项目类别:
Continuing Grant
Mathematical Sciences: Studies in Automorphism Groups and Operator Algebras
数学科学:自同构群和算子代数的研究
- 批准号:
8600375 - 财政年份:1986
- 资助金额:
$ 18.78万 - 项目类别:
Continuing Grant
Mathematical Sciences: Functional Analysis and Operator Algebraic Models of Infinite Quantum Systems
数学科学:无限量子系统的泛函分析和算子代数模型
- 批准号:
8302061 - 财政年份:1983
- 资助金额:
$ 18.78万 - 项目类别:
Standard Grant
相似海外基金
Conference: Noncommutative Geometry and Analysis
会议:非交换几何与分析
- 批准号:
2350508 - 财政年份:2024
- 资助金额:
$ 18.78万 - 项目类别:
Standard Grant
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
- 批准号:
23K03064 - 财政年份:2023
- 资助金额:
$ 18.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Model theory of operators and noncommutative function theory
算子模型论和非交换函数论
- 批准号:
23KJ1070 - 财政年份:2023
- 资助金额:
$ 18.78万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
- 批准号:
2302447 - 财政年份:2023
- 资助金额:
$ 18.78万 - 项目类别:
Continuing Grant
LEAPS-MPS: Noncommutative Geometry and Topology of Quantum Metrics
LEAPS-MPS:量子度量的非交换几何和拓扑
- 批准号:
2316892 - 财政年份:2023
- 资助金额:
$ 18.78万 - 项目类别:
Standard Grant
Analysis of noncommutative rational functions in terms of free probability
用自由概率分析非交换有理函数
- 批准号:
22KJ1817 - 财政年份:2023
- 资助金额:
$ 18.78万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Topics in noncommutative algebra 2022: homological regularities
2022 年非交换代数专题:同调正则
- 批准号:
2302087 - 财政年份:2023
- 资助金额:
$ 18.78万 - 项目类别:
Continuing Grant
Noncommutative analysis for self-similar structure
自相似结构的非交换分析
- 批准号:
DP220101631 - 财政年份:2022
- 资助金额:
$ 18.78万 - 项目类别:
Discovery Projects
Noncommutative statistical mechanics: probability at the confluence
非交换统计力学:汇合处的概率
- 批准号:
EP/V048902/2 - 财政年份:2022
- 资助金额:
$ 18.78万 - 项目类别:
Research Grant
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2022
- 资助金额:
$ 18.78万 - 项目类别:
Discovery Grants Program - Individual