Intersection Theory and Commutative Algebra
交集理论和交换代数
基本信息
- 批准号:0100604
- 负责人:
- 金额:$ 11.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-15 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Around forty years ago Serre proposed an algebraic definition of intersection multiplicities which satisfied many of the properties required of such a definition but left several unanswered questions. These problems concern, among other things, whether the intersection multiplicities are always greater than or equal to zero (nonnegativity) and precise conditions for them to vanish (vanishing) or to be greater than zero (positivity). These problems have become known as Serre's conjectures for intersection multiplicities. This proposal has two parts. The first part is a continuation of research of the principal investigator on the positivity conjecture that uses recent advances on the resolution of singularities which have led to a solution of the nonnegativity conjecture. This investigation will also study relations between these ideas and other questions on multiplicities in commutative algebra. The second part concerns modules of finite projective dimension over nonregular rings. It will use a recent result of the principal investigator and V. Srinivas to study intersection properties of modules of finite length and finite projective dimension and extend these results to study the vanishing conjecture for two modules of finite projective dimension.In this proposal the principal investigator studies some fundamental questions in the relations between Algebra and Geometry. Geometric sets are often defined as sets of solutions to polynomial equations. In studying the behaviour of these solutions, one has to define multiplicities, which give the number of times a solution should be counted. This concept generalizes the multiplicity of a root of a polynomial, which is crucial to most applications of polynomials. The investigation of these ideas has led to several fundamental questions in Algebra. One of these questions is the problem of determining when these multiplicities are positive. Another group of questions concerns modules of finite projective dimension, which are modules which can be described by a finite resolution; the finiteness of this description is used, for example, in computer algebra for computing invariants. The principal investigator will study properties of these modules and their relation to questions on multiplicities as well as to other branches of Algebra.
大约四十年前塞尔提出了一个代数定义的交叉多重性,满足了许多性质所需的这样一个定义,但留下了几个悬而未决的问题。 这些问题涉及,除其他事项外,是否相交的多重性总是大于或等于零(非负性)和精确的条件,他们消失(消失)或大于零(积极)。 这些问题已成为众所周知的塞尔的十字路口的多重性。 这项建议有两个部分。 第一部分是继续研究的主要调查员的积极性猜想,使用最近的进展,决议的奇异性,导致了解决方案的非负性猜想。 本文还将研究这些思想与交换代数中重数问题的关系。 第二部分研究非正则环上的有限投射维数模。 本文将利用主要研究者和V. Srinivas最近的一个结果来研究有限长和有限投射维数模的交性质,并将这些结果推广到研究两个有限投射维数模的消失猜想,主要研究代数与几何关系中的一些基本问题。 几何集合通常被定义为多项式方程的解的集合。在研究这些解的行为时,必须定义多重性,它给出了一个解应该被计数的次数。 这个概念推广了多项式根的重数,这对多项式的大多数应用至关重要。 对这些思想的研究导致了代数中的几个基本问题。 这些问题之一是确定这些多重性何时为正的问题。另一组问题涉及有限投射维数的模,这些模可以用有限分解来描述;这种描述的有限性用于计算不变量的计算机代数。 主要研究者将研究这些模块的属性及其与多重性问题以及代数其他分支的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Roberts其他文献
LB-469805-03 TACHYCARDIA THERAPY AND ENDPOINT RESULTS OF THE FIRST MODULAR, INTRA-BODY, COMMUNICATING SUBCUTANEOUS DEFIBRILLATOR-LEADLESS PACEMAKER SYSTEM: MODULAR ATP INTERIM COHORT
- DOI:
10.1016/j.hrthm.2024.04.027 - 发表时间:
2024-07-01 - 期刊:
- 影响因子:
- 作者:
Reinoud Knops;Vivek Y. Reddy;Paul Roberts;David L. Wright;Lucas V. Boersma;Rahul N. Doshi;Paul A. Friedman;Petr Neuzil;Carina Blomström-Lundqvist;Maria Grazia Bongiorni;Martin C. Burke;Daniel Gras;Steven P. Kutalek;Anish K. Amin;Eugene Y. Fu;Laurence M. Epstein;Jose M. Tolosana;Thomas D. Callahan;Johan D. Aasbo;Ralph S. Augostini - 通讯作者:
Ralph S. Augostini
Transcriptome sequencing of seven deep marine invertebrates
七种深海无脊椎动物的转录组测序
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:9.8
- 作者:
John A Burns;Joost Daniels;Kaitlyn P. Becker;David Casagrande;Paul Roberts;Eric Orenstein;Daniel M Vogt;Zhi Ern Teoh;Ryan Wood;Alexander H. Yin;Baptiste Genot;Robert J. Wood;K. Katija;Brennan T. Phillips;David F Gruber - 通讯作者:
David F Gruber
PO-07-193 ONE YEAR TACHYCARDIA/BRADYCARDIA FUNCTIONALITY FROM THE MODULAR ATP TRIAL
PO-07-193 来自模块化 ATP 试验的一年心动过速/心动过缓功能性研究
- DOI:
10.1016/j.hrthm.2025.03.1890 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:5.700
- 作者:
Michael S. Lloyd;Vivek Y. Reddy;Carina Blomström-Lundqvist;Lucas V. Boersma;Maria Grazia Bongiorni;Martin C. Burke;Rahul N. Doshi;Paul A. Friedman;Daniel Gras;Steven P. Kutalek;Petr Neuzil;Paul Roberts;David L. Wright;Anish K. Amin;Jose Maria Tolosana;Eloi Marijon;Laurence M. Epstein;Thomas D. Callahan;Johan D. Aasbo;Amy Brisben;Reinoud Knops - 通讯作者:
Reinoud Knops
CI-499642-003 A LEADLESS VENTRICULAR PACEMAKER PROVIDING ATRIOVENTRICULAR SYNCHRONOUS PACING IN THE REAL-WORLD SETTING: UPDATED RESULTS FROM THE MICRA AV POST-APPROVAL REGISTRY
CI-499642-003 一款在现实世界环境中提供房室同步起搏的无导线心室起搏器:MICRA AV 获批后注册登记的更新结果
- DOI:
10.1016/j.hrthm.2025.03.049 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:5.700
- 作者:
Christophe Garweg;Theofanie Mela;Mikhael F. El-Chami;Paul Roberts;Jonathan P. Piccini;Kurt Stromberg;Dedra H. Fagan;Nicolas Clementy - 通讯作者:
Nicolas Clementy
Effect of bearing geometry and structure support on transient elastohydrodynamic lubrication of metal-on-metal hip implants
- DOI:
10.1016/j.jbiomech.2006.05.015 - 发表时间:
2007-01-01 - 期刊:
- 影响因子:
- 作者:
Feng Liu;Zhongming Jin;Paul Roberts;Peter Grigoris - 通讯作者:
Peter Grigoris
Paul Roberts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Roberts', 18)}}的其他基金
Development of a Magnetostrophic Geodynamo
磁致地球发电机的研制
- 批准号:
1417031 - 财政年份:2014
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
The Precessionally-Driven Geodynamo
进动驱动的地球发电机
- 批准号:
0911004 - 财政年份:2009
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Homological Questions in Commutative Algebra
交换代数中的同调问题
- 批准号:
0758474 - 财政年份:2008
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Collaborative Research: CSEDI--Interdisciplinary Investigation of Geodynamo Reversal Mechanisms
合作研究:CSEDI--地球发电机反转机制的跨学科研究
- 批准号:
0652423 - 财政年份:2007
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
Prosecutors' Interviews with Crown Witnesses: A Socio-Legal and Comparative Analysis
检察官对官方证人的访谈:社会法律和比较分析
- 批准号:
AH/F005970/1 - 财政年份:2007
- 资助金额:
$ 11.4万 - 项目类别:
Research Grant
Numerical Simulation of Plumes and Small-Scale Dynamics in the Earth's Fluid Core
地球流体核心中羽流和小尺度动力学的数值模拟
- 批准号:
0609778 - 财政年份:2006
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
Multiplicities and Local Cohomology in Commutative Algebra
交换代数中的重数和局部上同调
- 批准号:
0500588 - 财政年份:2005
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
CMG Research: Collaborative Research: Models of Sub-Grid Scale Turbulence in Earth's Core and the Geodynamo
CMG 研究:协作研究:地核和地球发电机中的次网格尺度湍流模型
- 批准号:
0222334 - 财政年份:2002
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
Superfluid Turbulence in the Low Temperature Regime
低温状态下的超流体湍流
- 批准号:
0104288 - 财政年份:2001
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
Commutative Ring theory using tools of Singularity Theory
使用奇点理论工具的交换环理论
- 批准号:
23K03040 - 财政年份:2023
- 资助金额:
$ 11.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on commutative rings via etale cohomology theory
基于etale上同调理论的交换环研究
- 批准号:
23K03077 - 财政年份:2023
- 资助金额:
$ 11.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on Koszul AS-regular algebras from the categorical view of Non-commutative algebraic geometry and Representation theory
从非交换代数几何和表示论范畴角度研究Koszul AS-正则代数
- 批准号:
21K13781 - 财政年份:2021
- 资助金额:
$ 11.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Symmetric invariants, Poisson-commutative subalgebras, and interactions with representation theory
对称不变量、泊松交换子代数以及与表示论的相互作用
- 批准号:
454900253 - 财政年份:2020
- 资助金额:
$ 11.4万 - 项目类别:
Heisenberg Grants
Non-Commutative Spaces, Their Symmetries, and Geometric Quantum Group Theory
非交换空间、它们的对称性和几何量子群论
- 批准号:
2001128 - 财政年份:2020
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
Commutative Ring Theory via Resolution of Singularities
通过奇点解析的交换环理论
- 批准号:
20K03522 - 财政年份:2020
- 资助金额:
$ 11.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Koszul AS-regular algebras in terms of Non-commutative algebraic geometry and Representation theory
Koszul AS-非交换代数几何和表示论中的正则代数
- 批准号:
18K13397 - 财政年份:2018
- 资助金额:
$ 11.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Applications of Representation Theory in Commutative Algebra
表示论在交换代数中的应用
- 批准号:
1802067 - 财政年份:2018
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Interactions between Commutative Algebra and Representation Theory
交换代数与表示论之间的相互作用
- 批准号:
1848744 - 财政年份:2018
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant