Non-Commutative Spaces, Their Symmetries, and Geometric Quantum Group Theory
非交换空间、它们的对称性和几何量子群论
基本信息
- 批准号:2001128
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project fits within the scope of the branch of mathematics known as noncommutative geometry, originating primarily in the discovery early in the 20th century that the then-newly-discovered phenomena of quantum mechanics require a novel mathematical formalism. The main point of departure from classical (or non-quantum) mathematics is the fact that by the very small-scale nature of our ambient world, certain pairs of measurable physical quantities cannot be measured simultaneously (with the momentum and position of a particle serving as the preeminent example). Mathematically, this manifests as the non-commutativity of a pair of transformations on a physical system, justifying the name "noncommutative" for the relevant field of study. The formal objects that model the symmetries (that is, structure-preserving transformations) of a physical system modeled according to this paradigm are known as a "quantum groups", and they are the central theme of the present research proposal. The training of graduate students is an important part of this project.A number of broader themes inform the problems under consideration. As one example, discrete quantum groups, like their classical counterparts, fall into a constellation of taxonomic classes based on the approximation properties enjoyed by their group algebras. The quantum versions of the classical results are typically more technically demanding, only partially settled, and good test beds for the strengths of the geometric-group-theoretic and operator-algebraic techniques that jointly make classical discrete groups such rich geometric and analytical objects. In another direction, much light can be shed on the structure and above-mentioned approximation properties of quantum groups (discrete or more generally, locally compact) by category and representation-theoretic means. For that reason, results to the effect that group-theoretic data (e.g. the center of a locally compact quantum group) can be reconstructed from categories of unitary representations with their underlying structure are of some interest in the field and the project. As a third example, randomness features heavily in the study of groups and other discrete objects (probabilistic methods are very important in graph theory, for instance); the general phenomenon whereby a "generic" object, constructed randomly (with the technical meaning of that phrase depending on the specifics of the problem) tends to be highly asymmetric appears to replicate in the quantum setting, with "most" finite graphs, finite metric spaces, etc. admitting no quantum symmetries. Such generic rigidity results always recover their classical counterparts (given that quantum symmetries always encompass ordinary ones), but usually require more involved and often more enlightening proof techniques. It is hoped the requisite eclectic mix of approaches to the problems (combinatorial, representation-theoretic, probabilistic, operator-algebraic, etc.) will offer insight not only into the nature of the quantum-mathematical objects ostensibly being studied, but also into the classical versions thereof.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目属于数学分支非交换几何的范畴,非交换几何主要起源于20世纪早期的发现,当时新发现的量子力学现象需要一种新的数学形式。背离经典(或非量子)数学的主要观点是,由于我们周围世界的非常小的性质,某些可测量的物理量对不能同时测量(以粒子的动量和位置为杰出的例子)。在数学上,这表现为物理系统上一对变换的非交换性,证明了相关研究领域的“非交换”名称是正确的。根据这种范式建模的物理系统的对称性(即保持结构的变换)的形式化对象被称为“量子群”,它们是本研究计划的中心主题。研究生的培养是该项目的重要组成部分。若干更广泛的主题反映了正在审议的问题。举个例子,离散量子群,就像它们的经典对应物一样,根据它们群代数所享有的近似性质,归入一组分类类。经典结果的量子版本通常在技术上要求更高,只是部分解决,并且是几何群论和算子代数技术优势的良好测试平台,这些技术共同使经典离散群成为如此丰富的几何和分析对象。在另一个方向上,通过范畴和表示理论的方法可以揭示量子群(离散的或更一般的,局部紧致的)的结构和上述近似性质。因此,群论数据(例如,局部紧量子群的中心)可以从具有其底层结构的酉表示的类别中重构的结果在该领域和项目中具有一定的兴趣。第三个例子是,随机性在群体和其他离散对象的研究中非常重要(例如,概率方法在图论中非常重要);随机构造的“一般”对象(该短语的技术含义取决于问题的具体情况)倾向于高度不对称的一般现象似乎在量子设置中复制,“大多数”有限图,有限度量空间等不承认量子对称性。这样的一般刚性结果总是能恢复它们的经典对应物(考虑到量子对称性总是包含普通对称性),但通常需要更复杂、更有启发性的证明技术。人们希望,对这些问题(组合、表示论、概率、算子代数等)的必要的折衷混合方法,不仅能提供对表面上正在研究的量子数学对象的本质的洞察,而且能提供对其经典版本的洞察。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(39)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Random quantum graphs
随机量子图
- DOI:10.1090/tran/8584
- 发表时间:2022
- 期刊:
- 影响因子:1.3
- 作者:Chirvasitu, Alexandru;Wasilewski, Mateusz
- 通讯作者:Wasilewski, Mateusz
Shilov boundaries determine irreducible bounded symmetric domains
Shilov 边界确定不可约有界对称域
- DOI:10.1090/proc/15485
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Chirvasitu, Alexandru
- 通讯作者:Chirvasitu, Alexandru
Fields of locally compact quantum groups: Continuity and pushouts
局部紧量子群的域:连续性和推出
- DOI:10.1142/s0129167x21500646
- 发表时间:2021
- 期刊:
- 影响因子:0.6
- 作者:Chirvasitu, Alexandru
- 通讯作者:Chirvasitu, Alexandru
Quantum Galois groups of subfactors
- DOI:10.1142/s0129167x22500136
- 发表时间:2021-01
- 期刊:
- 影响因子:0.6
- 作者:S. Bhattacharjee;A. Chirvasitu;Debashish Goswami
- 通讯作者:S. Bhattacharjee;A. Chirvasitu;Debashish Goswami
(In)equality distance patterns and embeddability into Hilbert spaces
(中)等距离模式和希尔伯特空间的可嵌入性
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Alexandru Chirvasitu
- 通讯作者:Alexandru Chirvasitu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandru Chirvasitu其他文献
Topological automorphism groups of compact quantum groups
- DOI:
10.1007/s00209-017-2032-7 - 发表时间:
2018-01-11 - 期刊:
- 影响因子:1.000
- 作者:
Alexandru Chirvasitu;Issan Patri - 通讯作者:
Issan Patri
On the Hopf (co)center of a Hopf algebra
- DOI:
10.1016/j.jalgebra.2016.07.002 - 发表时间:
2016-10-15 - 期刊:
- 影响因子:
- 作者:
Alexandru Chirvasitu;Paweł Kasprzak - 通讯作者:
Paweł Kasprzak
Grothendieck rings of universal quantum groups
- DOI:
10.1016/j.jalgebra.2011.09.020 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:
- 作者:
Alexandru Chirvasitu - 通讯作者:
Alexandru Chirvasitu
Remarks on quantum symmetric algebras
- DOI:
10.1016/j.jalgebra.2013.08.031 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:
- 作者:
Alexandru Chirvasitu;Matthew Tucker-Simmons - 通讯作者:
Matthew Tucker-Simmons
Dedekind Complete Posets from Sheaves on von Neumann Algebras
- DOI:
10.1007/s10485-015-9415-x - 发表时间:
2015-10-17 - 期刊:
- 影响因子:0.500
- 作者:
Alexandru Chirvasitu - 通讯作者:
Alexandru Chirvasitu
Alexandru Chirvasitu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandru Chirvasitu', 18)}}的其他基金
Quantum Groups, Quantum Symmetries, and Non-Commutative Geometry
量子群、量子对称性和非交换几何
- 批准号:
1801011 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Quantum Groups, Quantum Symmetries, and Non-Commutative Geometry
量子群、量子对称性和非交换几何
- 批准号:
1565226 - 财政年份:2016
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似海外基金
Visible actions on spherical homogeneous spaces and applications to non-commutative harmonic analysis
球面齐次空间上的可见行为及其在非交换调和分析中的应用
- 批准号:
17K14155 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Interactions between Moduli Spaces, Non-Commutative Algebra, and Deformation Theory.
模空间、非交换代数和变形理论之间的相互作用。
- 批准号:
EP/M017516/2 - 财政年份:2016
- 资助金额:
$ 17.5万 - 项目类别:
Fellowship
Interactions between Moduli Spaces, Non-Commutative Algebra, and Deformation Theory.
模空间、非交换代数和变形理论之间的相互作用。
- 批准号:
EP/M017516/1 - 财政年份:2015
- 资助金额:
$ 17.5万 - 项目类别:
Fellowship
Deformation of Fisher information and entropy in non-commutative probability spaces
非交换概率空间中 Fisher 信息和熵的变形
- 批准号:
26400112 - 财政年份:2014
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-commutative Fourier analysis on solvable Lie groups and its applications in analysis on homogeneous spaces
可解李群的非交换傅里叶分析及其在齐次空间分析中的应用
- 批准号:
25400115 - 财政年份:2013
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on von Neumann algebras, free probability and non-commutative function spaces
冯诺依曼代数、自由概率和非交换函数空间的研究
- 批准号:
24540214 - 财政年份:2012
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deformations of probability distributions on non-commutative probability spaces
非交换概率空间上概率分布的变形
- 批准号:
21540213 - 财政年份:2009
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theory of Singular Integral Operators in Non-commutative Harmonic Analysis. A verification of Use of Real Hardy Spaces.
非交换调和分析中的奇异积分算子理论。
- 批准号:
20540188 - 财政年份:2008
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non commutative geometry and moduli spaces of holomorphic curves
非交换几何和全纯曲线的模空间
- 批准号:
18540079 - 财政年份:2006
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Banach Space Structures of Non-commutative L^p-spaces and Non-commutative Martingale Inequalities
非交换 L^p 空间和非交换鞅不等式的 Banach 空间结构
- 批准号:
0456781 - 财政年份:2005
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant