Inner Model Theory and Descriptive Set Theory
内模型理论和描述集合论
基本信息
- 批准号:0100745
- 负责人:
- 金额:$ 17.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Steel is working in the theory of canonical inner models for large cardinal hypotheses, and in descriptive set theory. In inner model theory, he has focussed on questions related to the fundamental iterability problem, and on questions concerning how to construct inner models in various situations so as to obtain consistency-strength lower bounds. He is particularly interested in obtaining large cardinal strength from the Proper Forcing Axiom, from the failure of Jensen's square principle at a singular cardinal, and from the failure of the Unique Branches Hypothesis. In descriptive set theory, Steel is working on various questions related to the structure of models satisfying strong forms of determinacy. Strong axioms of infinity, or as they are more often called, large cardinal hypotheses, have been a focal point of work in set theory and the foundations of mathematics for thirty or forty years, for at least two reasons. First, large cardinal hypotheses can be used to decide in a natural way many questions which cannot be decided on the basis of the commonly accepted system of axioms for mathematics, and second, large cardinal hypotheses provide a way of organizing and surveying all possible natural extensions of this commonly accepted system. One important way to study large cardinal hypotheses is to construct canonical minimal inner models in which these hypotheses are true. Such models admit a systematic, detailed analysis of their internal structure which makes them an invaluable technical tool in both sorts of application of large cardinal hypotheses. At the moment, we have a good theory of canonical inner models satisfying ``There is a Woodin cardinal", and even slightly stronger large cardinal hypotheses. A fundamental open problem, one of the most important open problems in set theory, is to extend this theory to models satisfying ``There is a supercompact cardinal". Steel is working in this direction.
斯蒂尔致力于大型基数假设的规范内部模型理论和描述性集合论。在内模理论中,他专注于与基本迭代性问题相关的问题,以及关于如何在各种情况下构造内模以获得一致性强度下界的问题。他特别感兴趣的是从适当的强迫公理,从詹森的平方原理在奇异基数上的失败,从独特的分支假设的失败中获得大的基数力量。在描述集合论中,斯蒂尔正在研究与满足强确定性形式的模型的结构有关的各种问题。强大的无穷大公理,或者更常被称为大型基数假设,至少出于两个原因,在三四十年来一直是集合论和数学基础的工作重点。第一,大的基本假设可以用来以自然的方式决定许多问题,这些问题不能根据普遍接受的数学公理体系来决定,第二,大的基本假设提供了一种组织和考察这一普遍接受的系统的所有可能的自然延伸的方法。研究大型基数假设的一个重要方法是构造规范的极小内模型,在该模型中这些假设为真。这类模型允许对其内部结构进行系统、详细的分析,这使它们在两种大型基本假设的应用中都成为一种宝贵的技术工具。目前,我们已经有了一个很好的正则内模型理论来满足“有一个Woodin基数”,甚至更强的大型基数假设。一个基本的公开问题,也是集合论中最重要的公开问题之一,是将这个理论推广到满足‘有一个超紧基数’的模型。钢铁公司正朝着这个方向努力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Steel其他文献
The structure of $$C(aa)$$
- DOI:
10.1007/s00605-025-02084-z - 发表时间:
2025-05-08 - 期刊:
- 影响因子:0.800
- 作者:
Gabriel Goldberg;John Steel - 通讯作者:
John Steel
The domestic levels ofK c are iterable
- DOI:
10.1007/bf02773379 - 发表时间:
2001-12-01 - 期刊:
- 影响因子:0.800
- 作者:
Alessandro Andretta;Itay Neeman;John Steel - 通讯作者:
John Steel
Square principles in ℙmax extensions
ℙmax 扩展中的平方原理
- DOI:
10.1007/s11856-017-1444-8 - 发表时间:
2017 - 期刊:
- 影响因子:1
- 作者:
A. Caicedo;Paul Larson;G. Sargsyan;R. Schindler;John Steel;M. Zeman - 通讯作者:
M. Zeman
John Steel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Steel', 18)}}的其他基金
Defining Freedom of the Press: A Cross national examination of press ethics and regulation in ten European countries
新闻自由的定义:十个欧洲国家新闻道德和监管的跨国审查
- 批准号:
AH/R00644X/2 - 财政年份:2020
- 资助金额:
$ 17.4万 - 项目类别:
Research Grant
Berkeley Conference in Inner Model Theory
伯克利内模型理论会议
- 批准号:
1919537 - 财政年份:2019
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
Defining Freedom of the Press: A Cross national examination of press ethics and regulation in ten European countries
新闻自由的定义:十个欧洲国家新闻道德和监管的跨国审查
- 批准号:
AH/R00644X/1 - 财政年份:2018
- 资助金额:
$ 17.4万 - 项目类别:
Research Grant
Third Muenster conference on inner model theory, the core model induction, and hod mice
第三届明斯特会议关于内部模型理论、核心模型归纳和 Hod 小鼠
- 批准号:
1539974 - 财政年份:2015
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
Inner Model Theory and Descriptive Set Theory
内模型理论和描述集合论
- 批准号:
0401312 - 财政年份:2004
- 资助金额:
$ 17.4万 - 项目类别:
Continuing Grant
Inner Model Theory and Descriptive Set Theory
内模型理论和描述集合论
- 批准号:
9803611 - 财政年份:1998
- 资助金额:
$ 17.4万 - 项目类别:
Continuing Grant
相似国自然基金
基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
- 批准号:81503449
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
- 批准号:30873339
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Berkeley Conference in Inner Model Theory
伯克利内模型理论会议
- 批准号:
1919537 - 财政年份:2019
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
Descriptive Inner Model Theory and Its Applications
描述性内模型理论及其应用
- 批准号:
1855757 - 财政年份:2019
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
Descriptive Inner Model Theory, Large Cardinals, and Combinatorics
描述性内模型理论、大基数和组合学
- 批准号:
1849295 - 财政年份:2018
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
Descriptive Inner Model Theory, Large Cardinals, and Combinatorics
描述性内模型理论、大基数和组合学
- 批准号:
1565808 - 财政年份:2016
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
Third Muenster conference on inner model theory, the core model induction, and hod mice
第三届明斯特会议关于内部模型理论、核心模型归纳和 Hod 小鼠
- 批准号:
1539974 - 财政年份:2015
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
Applications of inner model theory to precipitous ideals, forcing axioms and stationarity.
内模型理论在陡峭理想中的应用,强制公理和平稳性。
- 批准号:
242013688 - 财政年份:2013
- 资助金额:
$ 17.4万 - 项目类别:
Research Fellowships
Workshop in Inner Model Theory and Descriptive Set Theory
内模型理论和描述集合论研讨会
- 批准号:
1229043 - 财政年份:2012
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
Inner Model Theory in Outer Models
外模型中的内模型理论
- 批准号:
EP/J005630/1 - 财政年份:2012
- 资助金额:
$ 17.4万 - 项目类别:
Research Grant