Descriptive Inner Model Theory, Large Cardinals, and Combinatorics

描述性内模型理论、大基数和组合学

基本信息

  • 批准号:
    1565808
  • 负责人:
  • 金额:
    $ 9.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2018-09-30
  • 项目状态:
    已结题

项目摘要

The standard axioms of set theory, Zermelo-Fraenkel set theory with the axiom of choice (ZFC), have been widely accepted as a foundation for mathematics; virtually all branches of mathematics that have been studied and applied to other scientific fields can be interpreted in ZFC. However, it turns out that there are natural and important mathematical theories that cannot be decided within ZFC alone. The Large Cardinal Axioms (LCAs) are extensions of ZFC designed to settle all such theories. Thus LCAs pursue Godel's program in set theory. How can one test for "correctness" of an LCA? The inner model program, a major program in modern set theory, justifies correctness by constructing canonical models for LCAs much like the natural numbers are the canonical model for the Peano Axioms of arithmetic (PA) (and as such PA is a correct theory). This research project contributes to the inner model program by advancing methods for constructing canonical models for LCAs from various extensions of ZFC. The project focuses on studying the connections between inner models, sets of reals, hybrid structures (such as hereditarily ordinal definable sets (HOD) of determinacy models), forcing, and strong combinatorial principles (such as the Proper Forcing Axiom (PFA), (generalizations of) the tree property, the Unique Branch Hypothesis (UBH)). This research project aims to advance the basic theory of hybrid structures, as well as developing methods for the core model induction beyond its current state. In particular, the project aims to make advancements in answering two fundamental questions in descriptive inner model theory: (1) Is HOD of a determinacy model fine-structural (e.g. do the Generalized Continuum Hypothesis (GCH) and various square principles hold in HOD)? (2) What is the consistency strength of PFA?
集合论的标准公理Zermelo-Fraenkel集合论和选择公理(ZFC)已经被广泛接受为数学的基础;几乎所有被研究和应用于其他科学领域的数学分支都可以在ZFC中得到解释。然而,事实证明,有一些自然而重要的数学理论是不能单独在ZFC内决定的。大基数公理(lca)是ZFC的扩展,旨在解决所有这些理论。因此lca在集合论中追求哥德尔的程序。如何测试LCA的“正确性”?内部模型程序是现代集合理论中的一个主要程序,它通过为lca构建规范模型来证明正确性,就像自然数是皮亚诺算术公理(Peano Axioms of arithmetic, PA)的规范模型一样(因此PA是一个正确的理论)。本研究项目通过从ZFC的各种扩展中提出构建lca规范模型的方法,为内模型规划做出了贡献。该项目侧重于研究内部模型、实数集、混合结构(如确定性模型的遗传有序可定义集(HOD))、强迫和强组合原理(如适当强迫公理(PFA)、树性质的(推广)、唯一分支假设(UBH))之间的联系。本研究项目旨在推进混合结构的基础理论,并开发超越其现状的核心模型归纳方法。特别是,该项目旨在解决描述性内模型理论中的两个基本问题:(1)确定性模型的HOD是否具有精细结构(例如广义连续体假设(GCH)和各种平方原理在HOD中是否成立)?(2) PFA的稠度是多少?

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On a class of maximality principles
关于一类极大值原理
  • DOI:
    10.1007/s00153-017-0603-2
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0.3
  • 作者:
    Ikegami, Daisuke;Trang, Nam
  • 通讯作者:
    Trang, Nam
PFA and guessing models
PFA 和猜测模型
  • DOI:
    10.1007/s11856-016-1390-x
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Trang, Nam
  • 通讯作者:
    Trang, Nam
Tame failures of the unique branch hypothesis and models of ADℝ + Θ is regular
AD 独特分支假设和模型的驯服失败是有规律的
  • DOI:
    10.1142/s0219061316500070
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Sargsyan, Grigor;Trang, Nam
  • 通讯作者:
    Trang, Nam
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nam Trang其他文献

Preservation of AD via forcings
  • DOI:
    10.1007/s11856-025-2767-5
  • 发表时间:
    2025-05-09
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Daisuke Ikegami;Nam Trang
  • 通讯作者:
    Nam Trang
$mathsf {Sealing}$ from iterability
$mathsf {密封}$ 的可迭代性
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Sargsyan;Nam Trang
  • 通讯作者:
    Nam Trang
Derived Models , and Σ 1-Reflection
派生模型和 Σ 1-反射
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Steel;Nam Trang
  • 通讯作者:
    Nam Trang
STRUCTURE THEORY OF L(ℝ, μ) AND ITS APPLICATIONS
L(ℝ,μ)的结构理论及其应用
BSL volume 29 issue 2 Cover and Front matter
BSL 第 29 卷第 2 期封面和封面
  • DOI:
    10.1017/bsl.2023.20
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Bezhanishvili;S. Kuhlmann;K. Bimbó;Øystein Linnebo;P. Dybjer;A. Muscholl;A. Enayat;Arno Pauly;Albert Atserias;Antonio Montalbán;M. Atten;V. D. Paiva;Clinton Conley;Christian Retoré;D. Macpherson;Nam Trang;Sandra Müller
  • 通讯作者:
    Sandra Müller

Nam Trang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nam Trang', 18)}}的其他基金

CAREER: Current and Future Developments of the Core Model Induction
职业:核心模型归纳的当前和未来发展
  • 批准号:
    1945592
  • 财政年份:
    2020
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Continuing Grant
Descriptive Inner Model Theory and Its Applications
描述性内模型理论及其应用
  • 批准号:
    1855757
  • 财政年份:
    2019
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Standard Grant
Descriptive Inner Model Theory, Large Cardinals, and Combinatorics
描述性内模型理论、大基数和组合学
  • 批准号:
    1849295
  • 财政年份:
    2018
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Standard Grant

相似海外基金

Development of an operational solar wind model based on novel inner boundary conditions
基于新颖内部边界条件的可操作太阳风模型的开发
  • 批准号:
    2889121
  • 财政年份:
    2023
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Studentship
Establishing the pig as a large animal model for studying drug delivery to the inner ear
建立猪作为研究内耳药物输送的大型动物模型
  • 批准号:
    10705773
  • 财政年份:
    2022
  • 资助金额:
    $ 9.54万
  • 项目类别:
Establishing the pig as a large animal model for studying drug delivery to the inner ear
建立猪作为研究内耳药物输送的大型动物模型
  • 批准号:
    10577268
  • 财政年份:
    2022
  • 资助金额:
    $ 9.54万
  • 项目类别:
GEM: Using Van Allen Probes and Arase Density and Wave Data to Build a Model of Wave-Particle Interactions for Relativistic Electrons in the Inner Belt
GEM:使用范艾伦探针、Arase 密度和波数据建立内带相对论电子的波粒相互作用模型
  • 批准号:
    2040708
  • 财政年份:
    2021
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Interagency Agreement
Descriptive Inner Model Theory
描述性内模型理论
  • 批准号:
    1954149
  • 财政年份:
    2020
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Standard Grant
Investigation for inner ear pathology of eosinophilic otitis media with animal model
嗜酸性中耳炎动物模型内耳病理学研究
  • 批准号:
    19K18719
  • 财政年份:
    2019
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Berkeley Conference in Inner Model Theory
伯克利内模型理论会议
  • 批准号:
    1919537
  • 财政年份:
    2019
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Standard Grant
Descriptive Inner Model Theory and Its Applications
描述性内模型理论及其应用
  • 批准号:
    1855757
  • 财政年份:
    2019
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Standard Grant
Development of a roughened inner sphere for the three-meter model of the Earth's core
为地核三米模型开发粗糙的内球体
  • 批准号:
    1909055
  • 财政年份:
    2019
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Standard Grant
Descriptive Inner Model Theory, Large Cardinals, and Combinatorics
描述性内模型理论、大基数和组合学
  • 批准号:
    1849295
  • 财政年份:
    2018
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了