Descriptive Inner Model Theory and Its Applications
描述性内模型理论及其应用
基本信息
- 批准号:1855757
- 负责人:
- 金额:$ 12.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Zermelo-Fraenkel axioms plus the Axiom of Choice (ZFC) have been widely accepted as a foundation for mathematics; virtually all branches of mathematics that have been studied and applied to other scientific fields can be interpreted in ZFC. However, it turns out that there are natural and important mathematical theories which cannot be decided by ZFC alone. The Large Cardinal Axioms (LCAs) are extensions of ZFC designed to settle all such theories. This is the Godel's program in Set Theory. If an LCA is "correct", then the theories it decides are also correct. How can one test for correctness of an LCA? The Inner Model Program, a major program in modern Set Theory, justifies correctness by constructing canonical models for LCAs much like the natural numbers are the canonical model for the Peano Axioms of Arithmetic (PA) (and as such PA is a correct theory). The proposed project contributes to the Inner Model Program by advancing methods for constructing canonical models for LCAs from various extensions of ZFC. The project focuses on studying the connections between inner models, sets of reals, hybrid structures (such as hereditarily ordinal definable sets (HOD) of determinacy models), forcing, and strong combinatorial principles (such as the Proper Forcing Axiom (PFA)). The PI proposes to work on advancing the basic theory of hybrid structures, focusing on strategy mice and hod mice as well as developing methods for the core model induction beyond its current state. In particular, the project aims to make advancements in answering the following fundamental questions in descriptive inner model theory: (1) Is HOD of a determinacy model fine-structural (e.g. do the Generalized Continuum Hypothesis (GCH), various square principles hold in HOD)? (2) What is the consistency strength of PFA? (3) Does PFA (or any other strong combinatorial theory) imply models in various partially backgrounded constructions iterable?This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Zermelo-Fraenkel公理和选择公理(Axiom of Choice,ZFC)被广泛接受为数学的基础;几乎所有被研究和应用于其他科学领域的数学分支都可以在ZFC中解释。然而,事实证明,有自然的和重要的数学理论,不能决定由ZFC单独。大基数公理(LCAs)是ZFC的扩展,旨在解决所有这些理论。这是集合论中的哥德尔程序。如果LCA是“正确的”,那么它所决定的理论也是正确的。如何测试LCA的正确性?内模型程序是现代集合论中的一个主要程序,它通过为LCA构建规范模型来证明正确性,就像自然数是皮亚诺算术公理(PA)的规范模型一样(因此PA是正确的理论)。拟议的项目有助于内部模型计划的推进方法,从ZFC的各种扩展构建规范模型的LCA。该项目的重点是研究内部模型,实数集,混合结构(如确定性模型的遗传有序可定义集(HOD)),强迫和强组合原理(如正确强迫公理(PFA))之间的联系。PI建议致力于推进杂交结构的基础理论,重点关注策略小鼠和hod小鼠,以及开发超越当前状态的核心模型诱导方法。特别是,该项目旨在回答描述性内模型理论中的以下基本问题:(1)确定性模型的HOD是精细结构的吗(例如,广义连续统假设(GCH),各种平方原理在HOD中成立)?(2)PFA的稠度强度是多少?(3)PFA(或任何其他强组合理论)是否意味着模型在各种部分背景结构中是可迭代的?该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Supercompactness of \omega_1
论omega_1的超紧性
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Ikegami, Daisuke;Trang, Nam
- 通讯作者:Trang, Nam
Supercompactness Can Be Equiconsistent with Measurability
超紧凑性可以与可测量性等同
- DOI:10.1215/00294527-2021-0031
- 发表时间:2021
- 期刊:
- 影响因子:0.7
- 作者:Trang, Nam
- 通讯作者:Trang, Nam
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nam Trang其他文献
Preservation of AD via forcings
- DOI:
10.1007/s11856-025-2767-5 - 发表时间:
2025-05-09 - 期刊:
- 影响因子:0.800
- 作者:
Daisuke Ikegami;Nam Trang - 通讯作者:
Nam Trang
$mathsf {Sealing}$ from iterability
$mathsf {密封}$ 的可迭代性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
G. Sargsyan;Nam Trang - 通讯作者:
Nam Trang
Derived Models , and Σ 1-Reflection
派生模型和 Σ 1-反射
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
J. Steel;Nam Trang - 通讯作者:
Nam Trang
STRUCTURE THEORY OF L(ℝ, μ) AND ITS APPLICATIONS
L(ℝ,μ)的结构理论及其应用
- DOI:
10.1017/jsl.2014.65 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Nam Trang - 通讯作者:
Nam Trang
BSL volume 29 issue 2 Cover and Front matter
BSL 第 29 卷第 2 期封面和封面
- DOI:
10.1017/bsl.2023.20 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
G. Bezhanishvili;S. Kuhlmann;K. Bimbó;Øystein Linnebo;P. Dybjer;A. Muscholl;A. Enayat;Arno Pauly;Albert Atserias;Antonio Montalbán;M. Atten;V. D. Paiva;Clinton Conley;Christian Retoré;D. Macpherson;Nam Trang;Sandra Müller - 通讯作者:
Sandra Müller
Nam Trang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nam Trang', 18)}}的其他基金
CAREER: Current and Future Developments of the Core Model Induction
职业:核心模型归纳的当前和未来发展
- 批准号:
1945592 - 财政年份:2020
- 资助金额:
$ 12.06万 - 项目类别:
Continuing Grant
Descriptive Inner Model Theory, Large Cardinals, and Combinatorics
描述性内模型理论、大基数和组合学
- 批准号:
1849295 - 财政年份:2018
- 资助金额:
$ 12.06万 - 项目类别:
Standard Grant
Descriptive Inner Model Theory, Large Cardinals, and Combinatorics
描述性内模型理论、大基数和组合学
- 批准号:
1565808 - 财政年份:2016
- 资助金额:
$ 12.06万 - 项目类别:
Standard Grant
相似海外基金
Development of an operational solar wind model based on novel inner boundary conditions
基于新颖内部边界条件的可操作太阳风模型的开发
- 批准号:
2889121 - 财政年份:2023
- 资助金额:
$ 12.06万 - 项目类别:
Studentship
Establishing the pig as a large animal model for studying drug delivery to the inner ear
建立猪作为研究内耳药物输送的大型动物模型
- 批准号:
10705773 - 财政年份:2022
- 资助金额:
$ 12.06万 - 项目类别:
Establishing the pig as a large animal model for studying drug delivery to the inner ear
建立猪作为研究内耳药物输送的大型动物模型
- 批准号:
10577268 - 财政年份:2022
- 资助金额:
$ 12.06万 - 项目类别:
GEM: Using Van Allen Probes and Arase Density and Wave Data to Build a Model of Wave-Particle Interactions for Relativistic Electrons in the Inner Belt
GEM:使用范艾伦探针、Arase 密度和波数据建立内带相对论电子的波粒相互作用模型
- 批准号:
2040708 - 财政年份:2021
- 资助金额:
$ 12.06万 - 项目类别:
Interagency Agreement
Investigation for inner ear pathology of eosinophilic otitis media with animal model
嗜酸性中耳炎动物模型内耳病理学研究
- 批准号:
19K18719 - 财政年份:2019
- 资助金额:
$ 12.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Berkeley Conference in Inner Model Theory
伯克利内模型理论会议
- 批准号:
1919537 - 财政年份:2019
- 资助金额:
$ 12.06万 - 项目类别:
Standard Grant
Development of a roughened inner sphere for the three-meter model of the Earth's core
为地核三米模型开发粗糙的内球体
- 批准号:
1909055 - 财政年份:2019
- 资助金额:
$ 12.06万 - 项目类别:
Standard Grant
Descriptive Inner Model Theory, Large Cardinals, and Combinatorics
描述性内模型理论、大基数和组合学
- 批准号:
1849295 - 财政年份:2018
- 资助金额:
$ 12.06万 - 项目类别:
Standard Grant
Derivation and evaluation of an interfacial heat flux model that takes into account the inner heat conduction in the porous materials with high Biot number
考虑高毕奥数多孔材料内部热传导的界面热通量模型的推导和评估
- 批准号:
18K13698 - 财政年份:2018
- 资助金额:
$ 12.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists