The Whitham Equations and Their Solutions

惠瑟姆方程及其解

基本信息

  • 批准号:
    0103849
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-15 至 2004-06-30
  • 项目状态:
    已结题

项目摘要

NSF Award Abstract - DMS-0103849Mathematical Sciences: The Whitham Equations and Their SolutionsAbstractDMS-0103849TianThe Principal Investigator will consider a variety of problems concerning the Whitham equations, which describe the macrostructure of nonlinear dispersive oscillations. In particular, the Principal Investigator will study (1) multiphase Whitham equations in one spatial dimension, and (2) Whitham equations in several spatial dimensions. The primary interest of the first project is in the interaction of single-phase oscillations and generation and propagation of double and higher phase oscillations. The basic goal of the second project is to understand how the zero phase Whitham solution develops singularities in several dimensional space. The proposed methods will be both analytical and computational. Results of this project will have broad impact in interdisciplinary work. The multiphase Whitham equations in one spatial variable play an essential role in both zero dispersion limit and modulation theories of nonlinear dispersive oscillations. They also have applications in the transmission of pulses in optical fibers. The Whitham equations in several spatial dimensions are intrinsically connected to Landau-Ginzburg models in topological field theory and the Seiberg-Witten solution in supersymmetric Yang-Mills Theory.
NSF奖摘要-DMS-0103849数学科学:Whitham方程及其解DMS-0103849天首席研究员将考虑与Whitham方程有关的各种问题,这些方程描述了非线性色散振荡的宏观结构。特别是,首席调查员将研究(1)一个空间维度的多相Whitham方程,以及(2)几个空间维度的Whitham方程。第一个项目的主要兴趣在于单相振荡和双相及更高相振荡的产生和传播之间的相互作用。第二个项目的基本目标是了解零相位Whitham解是如何在多维空间中发展奇点的。建议的方法将是解析和计算的。该项目的成果将对跨学科工作产生广泛影响。一个空间变量的多相Whitham方程在非线性色散振荡的零色散极限理论和调制理论中都起着至关重要的作用。它们在光纤中传输脉冲方面也有应用。多维的Whitham方程与拓扑场论中的Landau-Ginzburg模型和超对称Yang-Mills理论中的Seiberg-Witten解有着内在的联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fei-Ran Tian其他文献

Fei-Ran Tian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fei-Ran Tian', 18)}}的其他基金

Mathematical Sciences: Mathematical Problems From Nonlinear Dispersive Oscillations, Hele-Shaw and Stokes Flows
数学科学:非线性色散振荡、赫勒肖和斯托克斯流的数学问题
  • 批准号:
    9622810
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Symmetry Methods for Discrete Equations and Their Applications
离散方程的对称性方法及其应用
  • 批准号:
    24K06852
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of discrete dynamical systems described by max-plus equations and their applications
最大加方程描述的离散动力系统分析及其应用
  • 批准号:
    23K03238
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Monge-Ampere type equations and their applications
Monge-Ampere型方程及其应用
  • 批准号:
    FT220100368
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
Functional equations for Nielsen polylogarithms and their arithmetic applications
尼尔森多对数的函数方程及其算术应用
  • 批准号:
    22KJ1612
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    571735-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    561540-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
  • 批准号:
    2044898
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Divergence-Free Hybridizable Discontinuous Galerkin Methods for the Incompressible Navier-Stokes Equations on Moving Domains and Their Application to Fluid-Structure Interaction
运动域不可压缩纳维-斯托克斯方程的无散杂化间断伽辽金方法及其在流固耦合中的应用
  • 批准号:
    2012031
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了