CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
基本信息
- 批准号:2044898
- 负责人:
- 金额:$ 44.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project investigates so-called nonlocal differential equations in combination with geometric and topological effects. Models involving nonlocal differential equations play a role in natural sciences such as physics (e.g., turbulence formation) and organic chemistry and biology (e.g., DNA and protein knotting). In recent years, refined techniques have been developed to treat nonlocal differential aspects, and it is the aim of the investigator to further develop and implement these techniques for geometric-topological aspects. The fundamental issues the project aims to understand are optimal shapes under such nonlocal equations, and the controllability of geometry and topology via nonlocal models. Integrated in this project are research opportunities for undergraduate and graduate students. A particular approach is to develop, together with undergraduate students, virtual reality visualizations of the deep geometric and topological effects that this project is investigating, to be used in training and public outreach.The project aims at further developing the analysis of fractional Sobolev spaces and fractional variational problems, especially problems with a geometric background. The methods, in particular from harmonic analysis, provide bridges between different areas of analysis, geometry, and topology, and the underlying goal is to find and further study these links. A large part of this project is concerned with applications of fractional harmonic analysis in geometric partial differential equations and the geometric calculus of variations. Problems include nonlocal self-repulsive knot and curvature energies (existence and regularity), the half-wave map equation motivated from physics (well-posedness), and analysis of the free boundary of variational problems with geometric constraints (regularity). A second part is concerned with application of harmonic analysis in quantitative topology for problems with maps that have less than one derivative (i.e., Hölder maps, maps in fractional Sobolev spaces): sharp estimates of the topological degree and the topological-analytical study of the Heisenberg group are treated. Integrated in this project is the use and development of virtual reality programs as a method for engaging undergraduate students in current research topics in analysis and geometry, for helping graduate students developing intuition for geometrical and topological concepts, and for enabling the broader public to visualize mathematical phenomena.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目研究所谓的非局部微分方程结合几何和拓扑效应。涉及非局部微分方程的模型在物理(如湍流形成)、有机化学和生物学(如DNA和蛋白质打结)等自然科学中发挥着重要作用。近年来,改进的技术已经发展到处理非局部微分方面,这是研究者的目标,以进一步发展和实施这些技术的几何拓扑方面。该项目旨在理解的基本问题是这些非局部方程下的最佳形状,以及通过非局部模型的几何和拓扑的可控性。本项目整合了本科生和研究生的研究机会。一种特殊的方法是与本科生一起开发该项目正在调查的深层几何和拓扑效应的虚拟现实可视化,用于培训和公共宣传。该项目旨在进一步发展分数Sobolev空间和分数变分问题的分析,特别是具有几何背景的问题。这些方法,特别是谐波分析的方法,在分析、几何和拓扑的不同领域之间提供了桥梁,潜在的目标是找到并进一步研究这些联系。这个项目的很大一部分是关于分数阶调和分析在几何偏微分方程和几何变分学中的应用。问题包括非局部自斥结和曲率能量(存在性和规律性),从物理出发的半波映射方程(适定性),以及具有几何约束的变分问题的自由边界分析(规律性)。第二部分是关于调和分析在具有小于一个导数的映射(即Hölder映射,分数Sobolev空间中的映射)的定量拓扑问题中的应用:处理拓扑度的尖锐估计和Heisenberg群的拓扑分析研究。在这个项目中集成了虚拟现实程序的使用和开发,作为一种方法,让本科生参与当前的分析和几何研究课题,帮助研究生培养对几何和拓扑概念的直觉,并使更广泛的公众能够可视化数学现象。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bourgain–Brezis–Mironescu convergence via Triebel-Lizorkin spaces
- DOI:10.1007/s00526-022-02382-6
- 发表时间:2021-09
- 期刊:
- 影响因子:2.1
- 作者:Denis Brazke;A. Schikorra;Po-Lam Yung
- 通讯作者:Denis Brazke;A. Schikorra;Po-Lam Yung
On uniqueness for half-wave maps in dimension ?≥3
论维度半波图的唯一性? 3
- DOI:10.1090/btran/171
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Eyeson, Eugene;Reyes Farina, Silvino;Schikorra, Armin
- 通讯作者:Schikorra, Armin
Regularizing properties of n-Laplace systems with antisymmetric potentials in Lorentz spaces
洛伦兹空间中具有反对称势的 n-拉普拉斯系统的正则性质
- DOI:10.1007/s00208-023-02727-2
- 发表时间:2023
- 期刊:
- 影响因子:1.4
- 作者:Martino, Dorian;Schikorra, Armin
- 通讯作者:Schikorra, Armin
Calderón-Zygmund theory for non-convolution type nonlocal equations with continuous coefficient
连续系数非卷积型非局部方程的Calderón-Zygmund理论
- DOI:10.1007/s42985-022-00161-8
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Fall, Mouhamed Moustapha;Mengesha, Tadele;Schikorra, Armin;Yeepo, Sasikarn
- 通讯作者:Yeepo, Sasikarn
Quantitative estimates for fractional Sobolev mappings in rational homotopy groups
有理同伦群中分数 Sobolev 映射的定量估计
- DOI:10.1016/j.na.2023.113349
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Park, Woongbae;Schikorra, Armin
- 通讯作者:Schikorra, Armin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Armin Schikorra其他文献
$$\varepsilon $$ -regularity for systems involving non-local, antisymmetric operators
- DOI:
10.1007/s00526-015-0913-3 - 发表时间:
2015-08-20 - 期刊:
- 影响因子:2.000
- 作者:
Armin Schikorra - 通讯作者:
Armin Schikorra
On energy-critical half-wave maps into $${\mathbb {S}}^2$$
- DOI:
10.1007/s00222-018-0785-1 - 发表时间:
2018-01-18 - 期刊:
- 影响因子:3.600
- 作者:
Enno Lenzmann;Armin Schikorra - 通讯作者:
Armin Schikorra
Armin Schikorra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Armin Schikorra', 18)}}的其他基金
Trends in Nonlocal Analysis and Geometry
非局部分析和几何的趋势
- 批准号:
1931340 - 财政年份:2019
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
Biology, Analysis, Geometry, Energies, Links: A Program on Low-dimensional Topology, Geometry, and Applications
生物学、分析、几何、能量、链接:低维拓扑、几何和应用程序
- 批准号:
1931930 - 财政年份:2019
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
相似国自然基金
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
- 批准号:
2345437 - 财政年份:2024
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics
多尺度磁子晶体和分数阶薛定谔方程控制的动力学
- 批准号:
2420266 - 财政年份:2024
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
- 批准号:
2345438 - 财政年份:2024
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
Fractional decomposition of graphs and the Nash-Williams conjecture
图的分数式分解和纳什-威廉姆斯猜想
- 批准号:
DP240101048 - 财政年份:2024
- 资助金额:
$ 44.99万 - 项目类别:
Discovery Projects
Tuning the Frequency Response of Fractional-Order Microsupercapacitors
调整分数阶微型超级电容器的频率响应
- 批准号:
2423124 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
EFRI BRAID: Fractional-order neuronal dynamics for next generation memcapacitive computing networks
EFRI BRAID:下一代记忆电容计算网络的分数阶神经元动力学
- 批准号:
2318139 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
CAREER: Novel platforms for topology and non-Fermi liquids: From projected topological branes to non-Abelian and fractional materials
职业:拓扑和非费米液体的新颖平台:从投影拓扑膜到非阿贝尔和分数材料
- 批准号:
2238679 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Continuing Grant
Development from PID Control to FOPID Control by Establishing Fractional-Order Control Method
通过建立分数阶控制方法从PID控制发展到FOPID控制
- 批准号:
23K03749 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cygnes Real: the first real-estate investment platform to use tokenisation, enabling fast, accessible and low cost fractional ownership of property
Cygnes Real:第一个使用代币化的房地产投资平台,实现快速、可访问且低成本的财产部分所有权
- 批准号:
10019107 - 财政年份:2022
- 资助金额:
$ 44.99万 - 项目类别:
Collaborative R&D