Analytic and Geometric Properties of Random Fields
随机场的解析和几何性质
基本信息
- 批准号:0103939
- 负责人:
- 金额:$ 20.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-15 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research is concerned with the development of a systematic approach to the study of analytic and geometric properties of random fields. Special emphasis is placed on Gaussian and stable random fields such as the Brownian sheet, stable sheets and additive Levy processes. The investigators wish to continue their study of precise quantitative connections between the aforementioned random fields and the theory of capacities, as well as potential theory for general Markov type random sets. They believe that these connections will yield detailed analytic and geometric information about the random fields in question. Amongst other things, two long-standing open problems are emphasized: one on the potential theory of the Brownian sheet, and the other in the theory of random coverings. The investigators also plan to develop and advance canonical techniques for fractal and multifractal analysis of a large class of multiparameter Levy processes, as well as the Brownian sheet. They expect these techniques will, in turn, be useful in studying complex random fields and processes.The Gaussian and stable random fields considered in this project play a prominent role in many areas of pure and applied mathematics, statistics, mathematical physics, medical imaging, ecology, geology, geophysics, oceanography, hydrology, as well as mathematical finance. This research is concerned with developing and introducing various analytic and geometric tools that will lead to a better understanding of geometric problems for random fields, as well as help promote their future applicability.
这项研究致力于发展一种系统的方法来研究随机场的解析和几何性质。特别强调了高斯场和稳定随机场,如布朗单、稳定单和加性Levy过程。研究人员希望继续研究上述随机场和容量理论之间的精确定量联系,以及一般马尔可夫型随机集的位势理论。他们相信,这些联系将产生关于所讨论的随机场的详细的解析和几何信息。在其他方面,强调了两个长期未解决的问题:一个是关于布朗单的位势理论,另一个是关于随机覆盖理论。研究人员还计划发展和推进一大类多参数Levy过程以及布朗单的分形和重分形分析的规范技术。他们希望这些技术反过来将有助于研究复杂的随机场和过程。本项目中考虑的高斯和稳定随机场在纯数学和应用数学、统计学、数学物理、医学成像、生态学、地质学、地球物理、海洋学、水文学以及数学金融的许多领域都发挥着突出的作用。这项研究致力于开发和引入各种解析和几何工具,这些工具将有助于更好地理解随机场的几何问题,并有助于促进其未来的适用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Davar Khoshnevisan其他文献
Local asymptotic laws for the Brownian convex hull
- DOI:
10.1007/bf01193057 - 发表时间:
1992-09-01 - 期刊:
- 影响因子:1.600
- 作者:
Davar Khoshnevisan - 通讯作者:
Davar Khoshnevisan
Dynkin’s Isomorphism Theorem and the Stochastic Heat Equation
- DOI:
10.1007/s11118-010-9193-x - 发表时间:
2010-08-03 - 期刊:
- 影响因子:0.800
- 作者:
Nathalie Eisenbaum;Mohammud Foondun;Davar Khoshnevisan - 通讯作者:
Davar Khoshnevisan
On the future infima of some transient processes
- DOI:
10.1007/bf01199896 - 发表时间:
1994-09-01 - 期刊:
- 影响因子:1.600
- 作者:
Davar Khoshnevisan;Thomas M. Lewis;Wenbo V. Li - 通讯作者:
Wenbo V. Li
Bounds on Gambler's Ruin Probabilities in Terms of Moments
- DOI:
10.1023/a:1015705430513 - 发表时间:
2002-03-01 - 期刊:
- 影响因子:1.000
- 作者:
S. N. Ethier;Davar Khoshnevisan - 通讯作者:
Davar Khoshnevisan
Davar Khoshnevisan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Davar Khoshnevisan', 18)}}的其他基金
Analysis of Stochastic Partial Differential Equations
随机偏微分方程的分析
- 批准号:
2245242 - 财政年份:2023
- 资助金额:
$ 20.39万 - 项目类别:
Continuing Grant
Collaborative Research: Asymptotic Geometry and Analysis of Stochastic Partial Differential Equations
合作研究:渐近几何与随机偏微分方程分析
- 批准号:
1855439 - 财政年份:2019
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Collaborative Research: Fractals, Multifractals, and Stochastic Partial Differential Equations
合作研究:分形、多重分形和随机偏微分方程
- 批准号:
1608575 - 财政年份:2016
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Geometry of Random Fields and Stochastic Partial Differential Equations
随机场和随机偏微分方程的几何
- 批准号:
1006903 - 财政年份:2010
- 资助金额:
$ 20.39万 - 项目类别:
Continuing Grant
Random Fields and Stochastic Partial Differential Equations
随机场和随机偏微分方程
- 批准号:
0706728 - 财政年份:2007
- 资助金额:
$ 20.39万 - 项目类别:
Continuing Grant
New Perspectives on Random Fields with Applications
随机场及其应用的新视角
- 批准号:
0404729 - 财政年份:2004
- 资助金额:
$ 20.39万 - 项目类别:
Continuing Grant
Seminar on Stochastic Processes, 2000
随机过程研讨会,2000 年
- 批准号:
9979209 - 财政年份:2000
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Mathematical Sciences: The Brownian Sheet and Related Processes
数学科学:布朗表及相关过程
- 批准号:
9503290 - 财政年份:1995
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
The Analytic and Geometric Properties of Random Cantor Sets
随机康托集的解析和几何性质
- 批准号:
510518-2017 - 财政年份:2017
- 资助金额:
$ 20.39万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Geometric and Analytic Properties of Real Hypersurfaces in Complex Euclidean and Projective Spaces
复欧几里得空间和射影空间中实超曲面的几何和解析性质
- 批准号:
1161735 - 财政年份:2012
- 资助金额:
$ 20.39万 - 项目类别:
Continuing Grant
Analytic and geometric properties of variational inequalities and PDE
变分不等式和偏微分方程的解析和几何性质
- 批准号:
1101246 - 财政年份:2011
- 资助金额:
$ 20.39万 - 项目类别:
Continuing Grant
Analytic properties of arithmetic zeta functions and geometric symmetry
算术 zeta 函数的解析性质和几何对称性
- 批准号:
21740004 - 财政年份:2009
- 资助金额:
$ 20.39万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Analytic and Spectral Properties of Geometric Operators (B06)
几何算子的解析和谱性质(B06)
- 批准号:
5444884 - 财政年份:2005
- 资助金额:
$ 20.39万 - 项目类别:
Collaborative Research Centres
Collaborative Research: Analytic and Geometric Properties of Discrete Groups--A Focused Research Group on the Novikov Conjecture and the Baum-Connes Conjecture
协作研究:离散群的解析性质和几何性质--诺维科夫猜想和鲍姆-康纳斯猜想重点研究小组
- 批准号:
0074066 - 财政年份:2000
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Collaborative Research: Geometric and Analytic Properties of Discrete Groups--A Focused Research Group on the Novikov Conjecture and the Baum-Connes Conjecture
协作研究:离散群的几何性质和解析性质--诺维科夫猜想和鲍姆-康纳斯猜想重点研究组
- 批准号:
0073812 - 财政年份:2000
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Collaborative Research: Geometric and Analytic Properties of Discrete Groups--A Focused Research Group on the Novikov Conjecture and the Baum-Connes Conjecture
协作研究:离散群的几何性质和解析性质--诺维科夫猜想和鲍姆-康纳斯猜想重点研究组
- 批准号:
0074062 - 财政年份:2000
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric, Analytic, and Dynamical Properties of Real Submanifolds and CR Structures
数学科学:实子流形和 CR 结构的几何、解析和动力学性质
- 批准号:
9504452 - 财政年份:1995
- 资助金额:
$ 20.39万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric and Analytic Properties of Multivariate Complex Functions
数学科学:多元复函数的几何和解析性质
- 批准号:
8219339 - 财政年份:1983
- 资助金额:
$ 20.39万 - 项目类别:
Continuing Grant