Markov Process
马尔可夫过程
基本信息
- 批准号:0104343
- 负责人:
- 金额:$ 68.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-06-01 至 2007-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0104343Varadhan The focus of this project is interacting particle systems and their scaling limits. When we have a large system of particles interacting through local interactions, the evolution of such a system when it starts far away from equilibrium poses several questions. Density being often the only conserved quantity, there is usually some sort of a transport equation appearing as the scaling limit. Superposed on it is the motion of individual particles, which is usually an inhomogeneous Markov process after the interactions are somehow averaged in the scaling limit. Laws of large numbers as well as fluctuations and large deviations from them are some of the interesting problems in this context. In addition the coefficients arising in the limiting descriptions are functions of density and or other parameters and the regularity of their dependence on the parameters is also of importance. There are a large class of physical processes where the rules of behavior are prescribed at the level of individual units. These rules concern the nature of the interaction between individual units that could involve some randomness as well. But one needs to make predictions of the collective behavior of the units at a much larger scale. This project deals with the derivation of the rules of collective behavior from models of interactions at the level of individual units. In the physical sciences examples of such problems that have been successfully studied include the rules of fluid flow that are derived from the laws of interaction between molecules that make up the fluid. Similar problems in the social sciences, for instance one of predicting macroeconomic behavior based on models of economic exchange between individuals, have not been adequately addressed.
这个项目的重点是相互作用的粒子系统和它们的尺度限制。当我们有一个大的粒子系统通过局部相互作用相互作用时,当它开始远离平衡时,这样一个系统的演化提出了几个问题。密度通常是唯一的守恒量,通常有某种输运方程作为标度极限。叠加在其上的是单个粒子的运动,在相互作用以某种方式在尺度极限内平均之后,这通常是一个非齐次马尔可夫过程。在这方面,大数定律以及波动和对它们的大偏差是一些有趣的问题。此外,在极限描述中产生的系数是密度和(或)其他参数的函数,它们对参数的依赖性的规律性也很重要。有一大类物理过程,其行为规则是在单个单位的水平上规定的。这些规则涉及到个体单位之间的互动性质,也可能包含一些随机性。但我们需要在更大的尺度上对单位的集体行为做出预测。这个项目涉及从个体单位层面的相互作用模型中推导出集体行为规则。在物理科学中,这类问题已被成功研究的例子包括由构成流体的分子之间相互作用的规律推导而来的流体流动规律。社会科学中的类似问题,例如根据个人之间的经济交换模型预测宏观经济行为的问题,还没有得到充分解决。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srinivasa Varadhan其他文献
Development and Validation of Technologies for Remediation of 1,2,3-Trichloropropane in Groundwater
- DOI:
10.1007/s40726-019-00122-7 - 发表时间:
2019-11-11 - 期刊:
- 影响因子:8.100
- 作者:
John P. Merrill;Eric J. Suchomel;Srinivasa Varadhan;Melissa Asher;Lea Z. Kane;Elisabeth L. Hawley;Rula A. Deeb - 通讯作者:
Rula A. Deeb
Srinivasa Varadhan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srinivasa Varadhan', 18)}}的其他基金
37th Conference on Stochastic Processes and their Applications
第37届随机过程及其应用会议
- 批准号:
1407743 - 财政年份:2014
- 资助金额:
$ 68.99万 - 项目类别:
Standard Grant
Northeast Probability Seminar 2005
2005年东北概率研讨会
- 批准号:
0532511 - 财政年份:2005
- 资助金额:
$ 68.99万 - 项目类别:
Standard Grant
Mathematical Sciences: Conference on Differential Equations
数学科学:微分方程会议
- 批准号:
9530982 - 财政年份:1996
- 资助金额:
$ 68.99万 - 项目类别:
Standard Grant
Mathematical Sciences: Markov Processes
数学科学:马尔可夫过程
- 批准号:
9503419 - 财政年份:1995
- 资助金额:
$ 68.99万 - 项目类别:
Continuing Grant
Mathematical Sciences: Post Doctoral Program in Analysis and Applied Mathematics
数学科学:分析与应用数学博士后项目
- 批准号:
9406467 - 财政年份:1994
- 资助金额:
$ 68.99万 - 项目类别:
Continuing Grant
Mathematical Sciences: Markov Processes
数学科学:马尔可夫过程
- 批准号:
9201222 - 财政年份:1992
- 资助金额:
$ 68.99万 - 项目类别:
Continuing Grant
相似国自然基金
Neural Process模型的多样化高保真技术研究
- 批准号:62306326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
磁转动超新星爆发中weak r-process的关键核反应
- 批准号:12375145
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
多臂Bandit process中的Bayes非参数方法
- 批准号:71771089
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
The last passage time of Markov process and its application to financial problems
马尔可夫过程的最后通过时间及其在金融问题中的应用
- 批准号:
23K01467 - 财政年份:2023
- 资助金额:
$ 68.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Application of Markov Decision Process Models to optimize vaccine administration practices
应用马尔可夫决策过程模型优化疫苗接种实践
- 批准号:
534825-2019 - 财政年份:2021
- 资助金额:
$ 68.99万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Convergence rates for Markov process with applications to computational statistics and machine learning.
马尔可夫过程的收敛率及其在计算统计和机器学习中的应用。
- 批准号:
2616280 - 财政年份:2021
- 资助金额:
$ 68.99万 - 项目类别:
Studentship
Application of Markov Decision Process Models to optimize vaccine administration practices
应用马尔可夫决策过程模型优化疫苗接种实践
- 批准号:
534825-2019 - 财政年份:2020
- 资助金额:
$ 68.99万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Optimizing Risk in a Gauss-Markov Process - Energy Storage Strategies for Renewable Integration
优化高斯-马尔可夫过程中的风险 - 可再生能源并网的储能策略
- 批准号:
1933243 - 财政年份:2019
- 资助金额:
$ 68.99万 - 项目类别:
Standard Grant
Application of Markov Decision Process Models to optimize vaccine administration practices
应用马尔可夫决策过程模型优化疫苗接种实践
- 批准号:
534825-2019 - 财政年份:2019
- 资助金额:
$ 68.99万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Clustering COPD Patient Trajectories via Dirichlet Process Mixture Models with Fixed Effects Continuous-Time Hidden Markov Models
通过具有固定效应连续时间隐马尔可夫模型的狄利克雷过程混合模型对 COPD 患者轨迹进行聚类
- 批准号:
400066 - 财政年份:2019
- 资助金额:
$ 68.99万 - 项目类别:
How do economies move - a hierarchical Dirichlet process hidden semi-Markov explanation
经济如何运动——分层狄利克雷过程隐藏的半马尔可夫解释
- 批准号:
2097161 - 财政年份:2018
- 资助金额:
$ 68.99万 - 项目类别:
Studentship
Mathematical analysis of Markov-process models of biological evolution
生物进化马尔可夫过程模型的数学分析
- 批准号:
16K05283 - 财政年份:2016
- 资助金额:
$ 68.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Information Geometrical Approach to Hidden Markov Process
隐马尔可夫过程的信息几何方法
- 批准号:
16KT0017 - 财政年份:2016
- 资助金额:
$ 68.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)