Markov Processes

马尔可夫过程

基本信息

  • 批准号:
    0904701
  • 负责人:
  • 金额:
    $ 40.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

In the original work of Esscher and Cramer Large Deviations arise through what is now known as Esscher or Cramer tilt, that changes the underlying distribution so that what was originally a rare event is now a very likely event. The exact tilt that leads to the large deviation allows one to calculate the precise rate of the large deviation. This provides a clue as to what the conditional distribution is, given that a particular rare event has occurred. While the original work is in the context of sums of independent random variables, subsequent work on large deviations has extended this idea considerably. It is the aim of this proposal to investigate this in the context of a random walk in a random environment. In particular if the walk travels with an unlikely velocity, what would it have experienced?Large deviations deals with estimating probabilities of rare events. Rare events do occur and the theory deals with determining exactly how rare they are. When a rare event occurs it is not isolated. Other rare events happen as well. The same phenomenon that generated the rare event could very well have spawned other rare events. The theory deals with predicting such other rare events.One starts with a world of models as well as an assumption about a specific model. An event with very small probability under this model occurs. This changes one's belief in the particular model and a new model is chosen that is consistent with the rare event.If there are many such models an optimal one is chosen in some way. This model makes predictions, which were perhaps rare under the old model but not any more.
在Esscher和Cramer的原始工作中,大偏差是通过现在被称为Esscher或Cramer倾斜的东西出现的,它改变了潜在的分布,因此最初是罕见的事件现在是非常可能的事件。导致大偏差的精确倾斜允许计算大偏差的精确速率。这提供了一个线索,告诉我们条件分布是什么,假设一个特定的罕见事件已经发生。虽然最初的工作是在独立随机变量的总和的背景下,随后的工作大偏差大大扩展了这一想法。这是本建议的目的,调查这在随机环境中的随机游走的背景下。特别是,如果步行以一个不太可能的速度行进,它会经历什么?大偏差处理估计罕见事件的概率。 稀有事件确实会发生,而这个理论就是要确定它们到底有多稀有。当一个罕见的事件发生时,它不是孤立的。其他罕见的事件也会发生。产生罕见事件的同一现象很可能产生其他罕见事件。该理论处理的是对其他罕见事件的预测,一开始是一个模型世界,以及对一个特定模型的假设。在此模型下发生概率非常小的事件。这改变了人们对特定模型的信念,并选择了一个与罕见事件一致的新模型,如果有许多这样的模型,则以某种方式选择一个最佳模型。 这个模型可以做出预测,这在旧模型下可能是罕见的,但现在已经不是了。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Srinivasa Varadhan其他文献

Development and Validation of Technologies for Remediation of 1,2,3-Trichloropropane in Groundwater
  • DOI:
    10.1007/s40726-019-00122-7
  • 发表时间:
    2019-11-11
  • 期刊:
  • 影响因子:
    8.100
  • 作者:
    John P. Merrill;Eric J. Suchomel;Srinivasa Varadhan;Melissa Asher;Lea Z. Kane;Elisabeth L. Hawley;Rula A. Deeb
  • 通讯作者:
    Rula A. Deeb

Srinivasa Varadhan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Srinivasa Varadhan', 18)}}的其他基金

37th Conference on Stochastic Processes and their Applications
第37届随机过程及其应用会议
  • 批准号:
    1407743
  • 财政年份:
    2014
  • 资助金额:
    $ 40.99万
  • 项目类别:
    Standard Grant
Markov Processes
马尔可夫过程
  • 批准号:
    1208334
  • 财政年份:
    2012
  • 资助金额:
    $ 40.99万
  • 项目类别:
    Continuing Grant
Markov Processes
马尔可夫过程
  • 批准号:
    0604380
  • 财政年份:
    2006
  • 资助金额:
    $ 40.99万
  • 项目类别:
    Continuing Grant
Northeast Probability Seminar 2005
2005年东北概率研讨会
  • 批准号:
    0532511
  • 财政年份:
    2005
  • 资助金额:
    $ 40.99万
  • 项目类别:
    Standard Grant
Markov Process
马尔可夫过程
  • 批准号:
    0104343
  • 财政年份:
    2001
  • 资助金额:
    $ 40.99万
  • 项目类别:
    Continuing Grant
Markov Processes
马尔可夫过程
  • 批准号:
    9803140
  • 财政年份:
    1998
  • 资助金额:
    $ 40.99万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Conference on Differential Equations
数学科学:微分方程会议
  • 批准号:
    9530982
  • 财政年份:
    1996
  • 资助金额:
    $ 40.99万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Markov Processes
数学科学:马尔可夫过程
  • 批准号:
    9503419
  • 财政年份:
    1995
  • 资助金额:
    $ 40.99万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Post Doctoral Program in Analysis and Applied Mathematics
数学科学:分析与应用数学博士后项目
  • 批准号:
    9406467
  • 财政年份:
    1994
  • 资助金额:
    $ 40.99万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Markov Processes
数学科学:马尔可夫过程
  • 批准号:
    9201222
  • 财政年份:
    1992
  • 资助金额:
    $ 40.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

Submesoscale Processes Associated with Oceanic Eddies
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    160 万元
  • 项目类别:

相似海外基金

Spectral theory of Schrodinger forms and Stochastic analysis for weighted Markov processes
薛定谔形式的谱论和加权马尔可夫过程的随机分析
  • 批准号:
    23K03152
  • 财政年份:
    2023
  • 资助金额:
    $ 40.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Structural Estimation and Optimization for Partially Observable Markov Decision Processes and Markov Games
职业:部分可观察马尔可夫决策过程和马尔可夫博弈的结构估计和优化
  • 批准号:
    2236477
  • 财政年份:
    2023
  • 资助金额:
    $ 40.99万
  • 项目类别:
    Standard Grant
Potential theoretic approach to quasi-stationary phenomena of Markov processes
马尔可夫过程准平稳现象的潜在理论方法
  • 批准号:
    23KJ0236
  • 财政年份:
    2023
  • 资助金额:
    $ 40.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Symmetric Markov processes: sample path analysis and functional analytic properties
对称马尔可夫过程:样本路径分析和功能分析属性
  • 批准号:
    23H01076
  • 财政年份:
    2023
  • 资助金额:
    $ 40.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis on metric measure spaces by optimal transport theory and Markov processes
最优输运理论和马尔可夫过程对度量测度空间的分析
  • 批准号:
    22H04942
  • 财政年份:
    2022
  • 资助金额:
    $ 40.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Markov Switching Processes and Financial Applications
马尔可夫转换过程和金融应用
  • 批准号:
    RGPIN-2018-04891
  • 财政年份:
    2022
  • 资助金额:
    $ 40.99万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Reinforcement Learning for Recursive Markov Decision Processes and Beyond
职业:递归马尔可夫决策过程及其他的强化学习
  • 批准号:
    2146563
  • 财政年份:
    2022
  • 资助金额:
    $ 40.99万
  • 项目类别:
    Continuing Grant
Large Markov decision processes and combinatorial optimisation
大马尔可夫决策过程和组合优化
  • 批准号:
    DP220102101
  • 财政年份:
    2022
  • 资助金额:
    $ 40.99万
  • 项目类别:
    Discovery Projects
New Algorithms for Markov Decision Processes and Reinforcement Learning
马尔可夫决策过程和强化学习的新算法
  • 批准号:
    2208163
  • 财政年份:
    2022
  • 资助金额:
    $ 40.99万
  • 项目类别:
    Continuing Grant
Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
  • 批准号:
    RGPIN-2017-05321
  • 财政年份:
    2022
  • 资助金额:
    $ 40.99万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了