Markov Processes
马尔可夫过程
基本信息
- 批准号:0604380
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-01 至 2009-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is partly about large deviations in different contexts. In studying the scaling limits of interacting particle limits, one usually proves laws of large numbers. They arise in different contexts and have corresponding large deviation results that are related. Random walks and diffusions in a random environment are also expected, under suitable conditions, to satisfy law of large numbers, central limit theorem and large deviations. The large deviation theory has close connection to the theory of homogenization of random Hamilton-Jacobi-Bellman equations with vanishing viscosity. We expect to continue with our investigation in these areas. In complex interactive systems, noise often acts as a stabilizing force and guides the system along a predictable deterministic path. Deviations from this behavior are rare. One goal of this project is to quantify and measure how rare a given deviation is and if such a deviation should occur what is most likely to have caused it?
这一建议部分是关于不同背景下的大偏差。在研究相互作用粒子极限的标度极限时,人们通常要证明大数定律。它们出现在不同的背景下,并有相应的大偏差的结果是相关的。 在适当的条件下,随机环境中的随机游动和扩散也期望满足大数定律、中心极限定理和大偏差。大偏差理论与粘性为零的随机Hamilton-Jacobi-Bellman方程的均匀化理论有着密切的联系。我们将继续在这些地区进行调查。在复杂的交互系统中,噪声常常起到稳定力的作用,引导系统沿着一条可预测的确定性路径运行,偏离这种行为的情况很少。本项目的一个目标是量化和测量给定偏差的罕见程度,以及如果发生这种偏差,最有可能导致它的原因是什么?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srinivasa Varadhan其他文献
Development and Validation of Technologies for Remediation of 1,2,3-Trichloropropane in Groundwater
- DOI:
10.1007/s40726-019-00122-7 - 发表时间:
2019-11-11 - 期刊:
- 影响因子:8.100
- 作者:
John P. Merrill;Eric J. Suchomel;Srinivasa Varadhan;Melissa Asher;Lea Z. Kane;Elisabeth L. Hawley;Rula A. Deeb - 通讯作者:
Rula A. Deeb
Srinivasa Varadhan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srinivasa Varadhan', 18)}}的其他基金
37th Conference on Stochastic Processes and their Applications
第37届随机过程及其应用会议
- 批准号:
1407743 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Conference on Differential Equations
数学科学:微分方程会议
- 批准号:
9530982 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Markov Processes
数学科学:马尔可夫过程
- 批准号:
9503419 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Post Doctoral Program in Analysis and Applied Mathematics
数学科学:分析与应用数学博士后项目
- 批准号:
9406467 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Markov Processes
数学科学:马尔可夫过程
- 批准号:
9201222 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
Submesoscale Processes Associated with Oceanic Eddies
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
相似海外基金
CAREER: Structural Estimation and Optimization for Partially Observable Markov Decision Processes and Markov Games
职业:部分可观察马尔可夫决策过程和马尔可夫博弈的结构估计和优化
- 批准号:
2236477 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Spectral theory of Schrodinger forms and Stochastic analysis for weighted Markov processes
薛定谔形式的谱论和加权马尔可夫过程的随机分析
- 批准号:
23K03152 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Potential theoretic approach to quasi-stationary phenomena of Markov processes
马尔可夫过程准平稳现象的潜在理论方法
- 批准号:
23KJ0236 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Symmetric Markov processes: sample path analysis and functional analytic properties
对称马尔可夫过程:样本路径分析和功能分析属性
- 批准号:
23H01076 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Markov Switching Processes and Financial Applications
马尔可夫转换过程和金融应用
- 批准号:
RGPIN-2018-04891 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Analysis on metric measure spaces by optimal transport theory and Markov processes
最优输运理论和马尔可夫过程对度量测度空间的分析
- 批准号:
22H04942 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (S)
CAREER: Reinforcement Learning for Recursive Markov Decision Processes and Beyond
职业:递归马尔可夫决策过程及其他的强化学习
- 批准号:
2146563 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Large Markov decision processes and combinatorial optimisation
大马尔可夫决策过程和组合优化
- 批准号:
DP220102101 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Projects
New Algorithms for Markov Decision Processes and Reinforcement Learning
马尔可夫决策过程和强化学习的新算法
- 批准号:
2208163 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
- 批准号:
RGPIN-2017-05321 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual