Electro/Magnetoencephalography Signal Processing Methods and Performance

脑电图/脑磁图信号处理方法和性能

基本信息

  • 批准号:
    0105334
  • 负责人:
  • 金额:
    $ 39.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-05-01 至 2005-04-30
  • 项目状态:
    已结题

项目摘要

Electro/MagnetoencephalographySignal Processing Methods and PerformanceArye NehoraiEECS DepartmentUniversity of Illinois at ChicagoDetecting electric sources in the brain is important for both understanding its function and for clinical applications. Examples include mapping the brain activities and finding foci of epilepsy activities before surgical treatment. We are developing detection methods that find the sources through computer processing of measurements from arrays of sensors around the head. More specifically, we employ Electro/Magnetoencephalography (E/MEG) sensors that measure electric potentials on the scalp and induced magnetic field outside the head. We are developing several new methods of processing the E/MEG signals, analyzing their performance and validating with real data their applicability, thus contributing to improvements in the use and performance of E/MEG equipment and to increase the capabilities of neurological data processing tools.We hope to solve some of the most currently relevant E/MEG problems: (i) estimating and tracking paths of functional and neuronal connectivity, following the trajectories of cerebral sources, (ii) estimating concentrated and extended sources, in the presence of noise with unknown spatio-temporal covariance, (iii) simultaneously estimating source parameters and tissue conductivities, (iv) developing computationally efficient methods for realistically-shaped head models, which reduce the demands on segmentation algorithms, (v) estimating source parameters for evoked responses with inhomogeneous epochs. We are also deriving performance measures for evaluating the newly proposed methods allowing comparison with existing systems and techniques; identifying those that are effective and helping in the optimum design of future systems. Finally, we are using empirical data sets evaluate and validate methods. These data sets are being derived by the Dr. Jeffrey Lewine's group from Clinical and Cognitive Neurosciences studies where whole-head MEG and high-density EEG are recorded simultaneously. The Nehorai group is developing the processing methods and the two groups will collaborate on their evaluation and validation.
脑电/脑磁仪信号处理方法和性能眼NehoraiEECS系伊利诺伊大学芝加哥分校检测大脑中的电源对于了解其功能和临床应用都很重要。例如,在手术治疗前绘制大脑活动图和发现癫痫活动的病灶。我们正在开发检测方法,通过计算机处理来自头部周围传感器阵列的测量值来找到源。更具体地说,我们使用电/脑磁图(E/MEG)传感器来测量头皮上的电位和头部外的感应磁场。我们正在开发几种处理E/MEG信号的新方法,分析其性能并用实际数据验证其适用性,从而有助于改进E/MEG设备的使用和性能,并提高神经学数据处理工具的能力。我们希望解决一些当前最相关的E/MEG问题:(i)根据脑源的轨迹估计和跟踪功能和神经元连接的路径;(ii)在存在未知时空协方差的噪声的情况下估计集中和扩展的源;(iii)同时估计源参数和组织电导率;(iv)为逼真形状的头部模型开发计算效率高的方法,从而减少对分割算法的要求。(v)估计非均匀时期诱发反应的源参数。我们还制定了绩效衡量标准,以评估新提出的方法,以便与现有系统和技术进行比较;识别那些是有效的,并有助于未来系统的优化设计。最后,我们使用经验数据集评估和验证方法。这些数据集是由Jeffrey Lewine博士的团队从临床和认知神经科学研究中获得的,他们同时记录了全头部脑磁图和高密度脑电图。Nehorai小组正在开发加工方法,两个小组将在评估和验证方面进行合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arye Nehorai其他文献

Convergence analysis of an adaptive pseudolinear-regression notch filtering algorithm
Riemannian Geometric Optimization Methods for Joint Design of Transmit Sequence and Receive Filter on MIMO Radar
MIMO雷达发射序列和接收滤波器联合设计的黎曼几何优化方法
  • DOI:
    10.1109/tsp.2020.3022821
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Jie Li;Guisheng Liao;Yan Huang;Zhen Zhang;Arye Nehorai
  • 通讯作者:
    Arye Nehorai
Development of an Institution-Specific Readmission Risk Prediction Model for Real-time Prediction and Patient-Centered Interventions
  • DOI:
    10.1007/s11606-020-06549-9
  • 发表时间:
    2021-01-26
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Ann-Marcia C. Tukpah;Eric Cawi;Laurie Wolf;Arye Nehorai;Lenise Cummings-Vaughn
  • 通讯作者:
    Lenise Cummings-Vaughn

Arye Nehorai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arye Nehorai', 18)}}的其他基金

CIF: Small: Algorithms, Performance and Design for Sparsity-Enforced Learning
CIF:小型:稀疏性强制学习的算法、性能和设计
  • 批准号:
    1014908
  • 财政年份:
    2010
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Standard Grant
CIF: IHCS: Medium: Collaborative Research: Design and Implementation of Position-Encoded 3D Microarrays
CIF:IHCS:媒介:协作研究:位置编码 3D 微阵列的设计和实现
  • 批准号:
    0963742
  • 财政年份:
    2010
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Standard Grant
SENSORS: Collaborative Research: Biochemical Sensors and Data Processing for Security Applications
传感器:协作研究:用于安全应用的生化传感器和数据处理
  • 批准号:
    0630734
  • 财政年份:
    2006
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Continuing Grant
SENSORS: Collaborative Research: Biochemical Sensors and Data Processing for Security Applications
传感器:协作研究:用于安全应用的生化传感器和数据处理
  • 批准号:
    0330342
  • 财政年份:
    2003
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Continuing Grant
Magnetoencephalography Performance Measures and Optimizations
脑磁图性能测量和优化
  • 批准号:
    9615590
  • 财政年份:
    1997
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Continuing Grant
New Methods and Results in Signal Processing and System Identification
信号处理和系统辨识的新方法和结果
  • 批准号:
    9122753
  • 财政年份:
    1992
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Continuing Grant
Investigation of Constrained Adaptive Algorithms for Narrow-Band Signals with Additive White Noise
带加性白噪声的窄带信号约束自适应算法研究
  • 批准号:
    8604351
  • 财政年份:
    1986
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Standard Grant

相似海外基金

Measuring neural replay using magnetoencephalography (MEG); use as a biomarker in human prion disease
使用脑磁图(MEG)测量神经重放;
  • 批准号:
    MR/X019586/1
  • 财政年份:
    2023
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Fellowship
Development of Quantum Magnetic Tunneling Junction Sensor Arrays for Brain Magnetoencephalography (MEG) under Natural Settings
自然环境下脑磁图 (MEG) 量子磁隧道结传感器阵列的开发
  • 批准号:
    10723802
  • 财政年份:
    2023
  • 资助金额:
    $ 39.43万
  • 项目类别:
Whole-head optically-pumped room-temperature magnetoencephalography
全头光泵室温脑磁图
  • 批准号:
    LE230100150
  • 财政年份:
    2023
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Interaction of neural oscillations in psychiatric disorders using magnetoencephalography
使用脑磁图研究精神疾病中神经振荡的相互作用
  • 批准号:
    23K14797
  • 财政年份:
    2023
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidating inter-individual differences in metacognitive abilities using predictive modelling of resting-state magnetoencephalography
使用静息态脑磁图的预测模型阐明元认知能力的个体间差异
  • 批准号:
    558120-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Postdoctoral Fellowships
Realising the potential of magnetoencephalography (MEG) using Optically Pumped Magnetometers (OPMs)
使用光泵磁力计 (OPM) 实现脑磁图 (MEG) 的潜力
  • 批准号:
    MR/X012263/1
  • 财政年份:
    2022
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Research Grant
Upgrading Magnetoencephalography (MEG) system with Internal Helium Recycler (IHR)
使用内部氦回收器 (IHR) 升级脑磁图 (MEG) 系统
  • 批准号:
    MR/X013243/1
  • 财政年份:
    2022
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Research Grant
Magnetoencephalography Investigation of Spoken Language Cognition Mechanism in Noisy Situations: Impact of Age and Training
噪音环境下口语认知机制的脑磁图研究:年龄和训练的影响
  • 批准号:
    22K09732
  • 财政年份:
    2022
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of scalp attached magnetoencephalography systems using tunnel magnetoresistive sensors (TMR)
使用隧道磁阻传感器 (TMR) 开发头皮附着脑磁图系统
  • 批准号:
    22K18437
  • 财政年份:
    2022
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Non-cryogenic Fieldable Interleaved Magnetoencephalography and Magnetic Resonance Imaging based on Multichannel Atomic Magnetometers
基于多通道原子磁强计的非低温现场交错脑磁图和磁共振成像
  • 批准号:
    10596209
  • 财政年份:
    2022
  • 资助金额:
    $ 39.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了