Mesoscale Numerical Methods for Certain Types of Implicit Partial Differential Equations

某些类型隐式偏微分方程的介观数值方法

基本信息

  • 批准号:
    0107539
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-08-15 至 2004-07-31
  • 项目状态:
    已结题

项目摘要

The investigator develops a comprehensive computational tool for modeling of the kinetics of microstructural evolution under thermo-mechanical loading in compound structures. He approximates the microstructural kinetics using first order implicit partial differential equations with a certain specific type of Dirichlet boundary conditions, and using a novel subgrid projection method. He applies this computational technique to provide an active control of vibrations and noise reduction based on the martensitic phase transformation. Implicit partial differential equations represent a large class of ordinary and partial differential equations and systems that are nonlinear in the highest derivatives, such as the Eikonal or Hamilton-Jacobi equations. They are closely related to partial differential inclusions that play a crucial role in the study of phase transitions. Typically, the solutions of imlicit partial differential equations are not smooth, they are not unique, and often they incorporate enormous amount of competing scales. These three distinctive features present a definitive challenge to the design of suitable numerical methods applicable to finding solutions of implicit partial differential equations. Recent work based on the Baire category argument shows that there exist solutions of such equations that cannot be obtained by standard analytical approaches. The existence theory itself is not constructive, does not yield any hint as to how to construct selection principles, and it does not provide a notion of a generalized solution.In regular use, machinery is subjected to periodic stresses. This results in acoustic waves travelling through the material. Since these waves are small in comparison to the potential energy of the overall machine, conversion to heat is an effective method of noise reduction. Thus highly damping materials may be used either in part or in full to accomplish this task. Shape memory alloys exhibit such significant damping properties. These are special alloys that change their microstructure from that of a stiff, rotationally symmetric phase to a ductile, less symmetric phase when cooled or put under stress. These desirable damping properties are a result of movement within the twin boundaries in the martensite phase, as well as the motion of the incoherent austenite-martensite interface, and are significantly temperature dependent. The investigator undertakes computational modeling to understand and actively control the phase transitions in shape memory alloys, based on implicit partial differential equations. The applications include such possibilities as controlled vibration of a cutting edge in non-invasive surgery, ultrasonic wave detectors, stabilization of platforms on various spacecraft as well as acoustic suppression in cockpits.
研究人员开发了一个全面的计算工具,用于模拟复合结构在热机械载荷下的微观结构演变动力学。 他近似的微结构动力学使用一阶隐式偏微分方程与某种特定类型的Dirichlet边界条件,并使用一种新的亚网格投影方法。他应用这种计算技术提供了一种基于马氏体相变的振动和噪音降低的主动控制。 隐式偏微分方程代表了一大类在最高阶导数中为非线性的常微分方程和偏微分方程以及系统,例如Eikonal或Hamilton-Jacobi方程。 它们与偏微分包含密切相关,而偏微分包含在相变研究中起着至关重要的作用。 通常,不合法偏微分方程的解是不光滑的,它们不是唯一的,并且它们经常包含大量的竞争尺度。 这三个独特的功能提出了一个明确的挑战,设计合适的数值方法适用于寻找隐式偏微分方程的解决方案。 最近的工作的基础上Baire类参数表明,存在的解决方案,这些方程不能得到标准的分析方法。 存在理论本身不是构造性的,它没有给出任何关于如何构造选择原理的提示,也没有提供一个广义解的概念。在正常使用中,机械受到周期性的应力。 这导致声波穿过材料。由于这些波与整个机器的势能相比很小,因此转换为热量是降低噪音的有效方法。 因此,高阻尼材料可以部分或全部用于完成该任务。 形状记忆合金表现出如此显著的阻尼特性。 这些是特殊的合金,当冷却或置于应力下时,其微观结构从刚性的旋转对称相变为韧性的不对称相。 这些理想的阻尼性能是马氏体相中的孪晶界内的运动以及不相干的马氏体-马氏体界面的运动的结果,并且显著地依赖于温度。 研究人员进行计算建模,以了解和主动控制形状记忆合金的相变,基于隐式偏微分方程。 这些应用包括非侵入性手术中切割边缘的受控振动、超声波探测器、各种航天器上平台的稳定以及驾驶舱中的声学抑制等可能性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Petr Kloucek其他文献

Petr Kloucek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Conference: Mathematical models and numerical methods for multiphysics problems
会议:多物理问题的数学模型和数值方法
  • 批准号:
    2347546
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Nonlinear logarithmic difference operators and their application to structure-preserving numerical methods
非线性对数差分算子及其在保结构数值方法中的应用
  • 批准号:
    23K17655
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Topological-based numerical methods for real-world problems
针对现实世界问题的基于拓扑的数值方法
  • 批准号:
    2882199
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
  • 批准号:
    2325195
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
  • 批准号:
    23K03232
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of numerical methods for solving unsteady shock waves stably and correctly and its application to shock wave interaction phenomena
稳定正确求解非定常冲击波数值方法的发展及其在冲击波相互作用现象中的应用
  • 批准号:
    23KJ0981
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Numerical Analysis for Meshfree and Particle Methods via Nonlocal Models
职业:通过非局部模型进行无网格和粒子方法的数值分析
  • 批准号:
    2240180
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
  • 批准号:
    2309687
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Innovation of Numerical Methods for High-Dimensional Partial Differential Equations
高维偏微分方程数值方法的创新
  • 批准号:
    2309378
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了