Regularity and Dispersive Properties of Evolution Equations
演化方程的正则性和色散性质
基本信息
- 批准号:0107791
- 负责人:
- 金额:$ 10.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main goals of this project are concerned with the study of theregularity properties of the solutions of the nonlinear wave equationsthat arise in connection with the Einstein equations and more generalquasilinear wave equations. In particular, we address the questions oflocal well posedness for the above equations. This project alsoinvestigates the global dispersive effects for the linear Schroedingerequation with variable coefficients.The Einstein equations is one of the cornerstones of the theory ofrelativity. They play a fundamental role in the description of thestructure of the universe. Since the equations can not be solvedexplicitly with exception of a few very special cases, we need tounderstand the qualitative properties of its solutions. We try tounderstand whether the solutions persist in time without exhibitingan abnormal behavior. To gain insight we do it for the more generalclass of equations. We also interested in understanding the connectionsbetween the classical and quantum behavior of particles. This leadsus to the study of the behavior of solutions of the fundamentalequation of the quantum mechanics, the Schroedinger equation.
这个项目的主要目标是研究非线性波动方程解的正则性,这些非线性波动方程是与爱因斯坦方程和更一般的准线性波动方程有关的。特别地,我们解决了上述方程的局部适定性问题。本计画也研究变系数线性薛定谔方程的整体色散效应,爱因斯坦方程是相对论的基石之一。它们在描述宇宙结构中起着基础性的作用。由于方程除了极个别的特殊情况外是不可解的,因此我们需要了解其解的定性性质。我们试图理解这些解决方案是否能在不引起异常行为的情况下持续存在。为了获得更深入的了解,我们对更一般的方程类进行了研究。我们也对理解粒子的经典行为和量子行为之间的联系感兴趣。这导致了对量子力学基本方程薛定谔方程解的行为的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Igor Rodnianski其他文献
A physical space approach to wave equation bilinear estimates
- DOI:
10.1007/bf02868479 - 发表时间:
2002-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Sergiu Klainerman;Igor Rodnianski;Terence Tao - 通讯作者:
Terence Tao
OF RADIATION FIELDS OF FREE WAVES
自由波的辐射场
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
I. Liangl;R. U. S. Hen;EI Lijuanw;Vadim Kaloshin;A. Mazzucato;Richard B. Melrose Massachussets;Frank Merle;Werner Müller;Igor Rodnianski;Terence Tao;Michael E. Taylor;Dan Virgil;J. Wright - 通讯作者:
J. Wright
ON L ∞ ESTIMATES FOR MONGE–AMPÈRE AND HESSIAN EQUATIONS
蒙日-安培方程和黑森方程的 L ∞ 估计
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
UO Bing;F. R. D UONG H. P HONG;C. H. W. Ang;Vadim Kaloshin;A. Mazzucato;Richard B. Melrose Massachussets;Frank Merle;Werner Müller;Igor Rodnianski;Terence Tao;Michael E. Taylor;Dan Virgil;J. Wright - 通讯作者:
J. Wright
WITH WHITE NOISE POTENTIAL ON COMPACT SURFACES
紧凑表面上可能存在白噪声
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
A. N. M. Ouzard;I. M. Z. Achhuber;Vadim Kaloshin;A. Mazzucato;Richard B. Melrose Massachussets;Frank Merle;Werner Müller;Igor Rodnianski;Terence Tao;Michael E. Taylor;Dan Virgil;J. Wright - 通讯作者:
J. Wright
QUANTITATIVE ALEXANDROV
定量亚历山德罗夫
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
V. E. J. Ulin;J. O. N. Iinikoski;Patrick Gérard;A. Mazzucato;Richard B. Melrose Massachussets;Frank Merle;Werner Müller;Igor Rodnianski;Terence Tao;Michael E. Taylor;Dan Virgil;J. Wright - 通讯作者:
J. Wright
Igor Rodnianski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Igor Rodnianski', 18)}}的其他基金
Beyond Stability of Black Holes in General Relativity
超越广义相对论中黑洞的稳定性
- 批准号:
2005464 - 财政年份:2020
- 资助金额:
$ 10.05万 - 项目类别:
Continuing Grant
Singularities and Black Holes in General Relativity
广义相对论中的奇点和黑洞
- 批准号:
1900288 - 财政年份:2019
- 资助金额:
$ 10.05万 - 项目类别:
Continuing Grant
The Nonlinear Stability of Black Holes and the Structure of Spacetime Singularities in General Relativity
广义相对论中黑洞的非线性稳定性与时空奇点的结构
- 批准号:
1709270 - 财政年份:2017
- 资助金额:
$ 10.05万 - 项目类别:
Continuing Grant
General Relativity and geometric hypersolic PDEs
广义相对论和几何超音速偏微分方程
- 批准号:
1001500 - 财政年份:2010
- 资助金额:
$ 10.05万 - 项目类别:
Continuing Grant
General Relativity and Geometric Hyperbolic PDEs
广义相对论和几何双曲偏微分方程
- 批准号:
0702270 - 财政年份:2007
- 资助金额:
$ 10.05万 - 项目类别:
Continuing Grant
Local Regularity and Long Time Behavior of Solutions on Non-Linear Evolution Equations
非线性演化方程解的局部正则性和长期行为
- 批准号:
0406627 - 财政年份:2004
- 资助金额:
$ 10.05万 - 项目类别:
Standard Grant
相似海外基金
Elucidating the Fundamental Properties of the Nucleon with Dispersive Techniques
用色散技术阐明核子的基本性质
- 批准号:
2013184 - 财政年份:2020
- 资助金额:
$ 10.05万 - 项目类别:
Continuing Grant
Properties of solutions to dispersive equations
色散方程解的性质
- 批准号:
25400162 - 财政年份:2013
- 资助金额:
$ 10.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAPSI: Decay and regularity properties of nonlinear dispersive PDEs
EAPSI:非线性色散偏微分方程的衰减和规律性特性
- 批准号:
1015521 - 财政年份:2010
- 资助金额:
$ 10.05万 - 项目类别:
Fellowship Award
Asymptotic properties of solutions to nonlinear dispersive partial differential equations
非线性色散偏微分方程解的渐近性质
- 批准号:
21740102 - 财政年份:2009
- 资助金额:
$ 10.05万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Analysis of properties of solutions to dispersive equations via canonical transforms and comparison principle
通过正则变换和比较原理分析色散方程解的性质
- 批准号:
20340029 - 财政年份:2008
- 资助金额:
$ 10.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
On well-posedness and regularity properties for fluid equations and nonlinear dispersive equations
流体方程和非线性色散方程的适定性和正则性
- 批准号:
0758247 - 财政年份:2008
- 资助金额:
$ 10.05万 - 项目类别:
Standard Grant
Relations between properties of solutions and geometric symmetry of solutions for nonlinear wave and dispersive equations
非线性波和色散方程解的性质与解的几何对称性之间的关系
- 批准号:
19204012 - 财政年份:2007
- 资助金额:
$ 10.05万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Regularity Properties of Dispersive PDE
色散偏微分方程的正则性质
- 批准号:
0602792 - 财政年份:2006
- 资助金额:
$ 10.05万 - 项目类别:
Continuing Grant
Dispersive properties of photonic crystal waveguides
光子晶体波导的色散特性
- 批准号:
5451079 - 财政年份:2005
- 资助金额:
$ 10.05万 - 项目类别:
Priority Programmes
Using the Dispersive Properties of Photonic Crystals for Optical Communication
利用光子晶体的色散特性进行光通信
- 批准号:
0200445 - 财政年份:2002
- 资助金额:
$ 10.05万 - 项目类别:
Continuing Grant