Regularity Properties of Dispersive PDE
色散偏微分方程的正则性质
基本信息
- 批准号:0602792
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Regularity Properties of Dispersive PDE Abstract of Proposed ResearchMarkus KeelThe project is to study the long-time evolution of nonlinear dispersive partial differential equations, including Korteweg-de Vries (KdV), certain nonlinear Schroedinger (NLS) equations, and nonlinear second order hyperbolic systems. The goals are a better understanding of the long time regularity of the solutions, of their qualitative properties such as how (or whether) the solution scatters, and of how energy is or isn't transported to higher frequencies as time passes. We shall explore several new approaches to these issues, including Fourier space and physical space methods.This research is motivated by a number of considerations. First, the model equations to be investigated here are well-known approximations, or symmetry reductions, of accepted theories. For example, KdV gives approximate descriptions of certain fluid flows; while NLS arises in the description of diverse physical phenomena -including Bose-Einstein condensates, and as a description of the envelope dynamics of a general dispersive wave in a weakly nonlinear medium. The wave maps equation describes certain symmetric solutions to the Einstein vacuum equations. A second motivation for the research is that the questions considered require careful mathematical analysis of the ways different components of the nonlinear waves interact with one another. This is currently not well understood. We expect that progress made in understanding this issue will provide useful mathematical tools to study physical theories with other, possibly quite different, nonlinearities.
色散偏微分方程解的正则性研究摘要研究非线性色散偏微分方程组的长期演化,包括KdV方程、某些非线性薛定谔方程和非线性二阶双曲型方程。目标是更好地了解解决方案的长期规律性,它们的定性属性,如解决方案如何(或是否)散射,以及能量如何随着时间的推移被传输到或不被传输到更高的频率。我们将探索几种新的方法来解决这些问题,包括傅立叶空间和物理空间方法。这项研究是出于一些考虑。首先,这里要研究的模型方程是公认理论的众所周知的近似或对称性约化。例如,KdV给出了某些流体流动的近似描述;而NLS则出现在对各种物理现象的描述中--包括玻色-爱因斯坦凝聚,以及描述弱非线性介质中一般色散波的包络动力学。波图方程描述了爱因斯坦真空方程的某些对称解。这项研究的第二个动机是,所考虑的问题需要对非线性波的不同分量相互作用的方式进行仔细的数学分析。这一点目前还没有得到很好的理解。我们期望,在理解这个问题上取得的进展将提供有用的数学工具,用其他可能完全不同的非线性来研究物理理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Markus Keel其他文献
On the cone of curves of an abelian variety
在阿贝尔簇的曲线锥体上
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Thomas Bauer;G. R. Everest;Allan Greenleaf;Andreas Seeger;Nobuo Hara;Yujiro Kawamata;Markus Keel;Terence Tao;Alexander Kumjian;P. Muhly;Jean N. Renault;Dana P. Williams;M. Pollicott;Richard Sharp;A. Sinclair;Roger Smith;Eng;Chen - 通讯作者:
Chen
Markus Keel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Markus Keel', 18)}}的其他基金
The Eighteenth Riviere-Fabes Symposium in Analysis and PDE
第十八届 Riviere-Fabes 分析与偏微分方程研讨会
- 批准号:
1503700 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Riviere-Fabes Symposium in Analysis and PDE; Spring 2009, Minneapolis, MN
Riviere-Fabes 分析和偏微分方程研讨会;
- 批准号:
0904486 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Hyperbolic Systems and Oscillations Conference, University of Bordeaux, France
双曲系统和振荡会议,法国波尔多大学
- 批准号:
0617536 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
Regularity Properties of Nonlinear Wave Equations
非线性波动方程的正则性
- 批准号:
0303704 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Elucidating the Fundamental Properties of the Nucleon with Dispersive Techniques
用色散技术阐明核子的基本性质
- 批准号:
2013184 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
Properties of solutions to dispersive equations
色散方程解的性质
- 批准号:
25400162 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAPSI: Decay and regularity properties of nonlinear dispersive PDEs
EAPSI:非线性色散偏微分方程的衰减和规律性特性
- 批准号:
1015521 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Fellowship Award
Asymptotic properties of solutions to nonlinear dispersive partial differential equations
非线性色散偏微分方程解的渐近性质
- 批准号:
21740102 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Analysis of properties of solutions to dispersive equations via canonical transforms and comparison principle
通过正则变换和比较原理分析色散方程解的性质
- 批准号:
20340029 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
On well-posedness and regularity properties for fluid equations and nonlinear dispersive equations
流体方程和非线性色散方程的适定性和正则性
- 批准号:
0758247 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Relations between properties of solutions and geometric symmetry of solutions for nonlinear wave and dispersive equations
非线性波和色散方程解的性质与解的几何对称性之间的关系
- 批准号:
19204012 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Dispersive properties of photonic crystal waveguides
光子晶体波导的色散特性
- 批准号:
5451079 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Priority Programmes
Using the Dispersive Properties of Photonic Crystals for Optical Communication
利用光子晶体的色散特性进行光通信
- 批准号:
0200445 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
Regularity and Dispersive Properties of Evolution Equations
演化方程的正则性和色散性质
- 批准号:
0107791 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant