RUI: Vacuolar Transport of Allelochemical Conjugates During Defense Responses.

RUI:防御反应期间化感化学缀合物的液泡运输。

基本信息

  • 批准号:
    0114131
  • 负责人:
  • 金额:
    $ 28.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-09-01 至 2005-08-31
  • 项目状态:
    已结题

项目摘要

One of the main functions of the plant cell vacuole is to store allelochemicals. These allelochemicals act as a chemical defense mechanism that helps protect the cell from attacks by other organisms. Allelochemical production presents somewhat of a dilemma for the cell since in order to be effective the plant must produce these compounds in relatively high concentrations. However, since many of these allelochemicals are non-specific toxins, high concentrations in the cell may result in autotoxicity. The plant cells appear to have resolved this dilemma by first conjugating the allelochemical to a water-soluble molecule such as glutathione (GSH) or glucose and sequestering the conjugate in the vacuole. These conjugates may be recognized and transported into the vacuole by a subclass of ATP-binding cassette transporters known as multidrug resistance-associated proteins (MRPs). In order to provide more information regarding the vacuolar transport of allelochemicals, this project has three general objectives. Objective 1 is to determine if glucose or GSH conjugates of trans-cinnamic acid (CA), para-coumaric acid (PC) and salicylic acid (SA) are localized in the vacuole of Arabidopsis cells. This will be determined through in vivo labeling techniques and TLC/HPLC analysis of vacuolar contents. CA, PC and SA were chosen for this study because they are allelochemicals found in virtually all plants. Objective 2 is to develop a simple method for the synthesis of the glucose conjugates of SA, CA and PC. For these compounds, these are the most common conjugates found in plant cells and a facile, high-yield synthesis will provide useful substrates for detailed vacuolar transport studies. Objective 3 is to determine how the vacuolar transport of both glucose and GSH conjugates changes during a defense response. A defense response will be initiated in Arabidopsis cell suspension cultures by the addition of a fungal elicitor or known signal molecules of plant defense (e.g. SA, ethylene, jasmonate, superoxide, and H2O2). Arabidopsis cell suspension cultures will be used for this study because of the molecular tools available and the ease in which the treatments can be added. Changes in the transcription of Arabidopsis MRPs (AtMRPs) in response to the treatments will be followed through dot-blot analysis using the AtMRP expressed sequence tags as probes. Vacuolar transport activity using both glucose and GSH conjugates will be compared to the changes in AtMRP transcription and measured using isolated tonoplast vesicles from the treated cells. These changes in transport activity will also be compared to changes that occur in allelochemical production and conjugation during a defense response. If vacuolar sequestration of allelochemicals is an important aspect of a plant's defense response, then changes in allelochemical production and conjugation should be accompanied by changes in vacuolar transport. The results from these studies should provide considerable insight into the importance of vacuolar sequestration of allelochemicals during a plant cell's defense response. In the future, manipulation of vacuolar sequestration through biotechnology may be able to enhance the plants own natural defense mechanisms, which would have great agricultural significance with regard to pest control.
植物细胞液泡的主要功能之一是储存化感物质。这些化感物质作为一种化学防御机制,有助于保护细胞免受其他生物的攻击。化感物质的产生对细胞来说有点进退两难,因为为了有效,植物必须以相对高的浓度产生这些化合物。然而,由于这些化感物质中的许多是非特异性毒素,细胞中的高浓度可能导致自毒性。植物细胞似乎已经解决了这个难题,首先将化感物质与一种水溶性分子如谷胱甘肽(GSH)或葡萄糖结合,并将结合物隔离在液泡中。这些缀合物可以被称为多药耐药相关蛋白(MRP)的ATP结合盒转运蛋白亚类识别并转运到液泡中。为了提供更多关于化感物质液泡运输的信息,本项目有三个总体目标。目的1是确定葡萄糖或反式肉桂酸(CA)、对香豆酸(PC)和水杨酸(SA)的GSH结合物是否定位于拟南芥细胞的液泡中。这将通过体内标记技术和液泡内容物的TLC/HPLC分析来确定。选择CA、PC和SA进行这项研究,因为它们是几乎所有植物中发现的化感物质。目的二是建立一种简便的合成SA、CA和PC葡萄糖结合物的方法。对于这些化合物,这些是在植物细胞中发现的最常见的缀合物,并且容易、高产率的合成将为详细的液泡运输研究提供有用的底物。目的3是确定在防御反应过程中葡萄糖和GSH结合物的液泡转运如何变化。通过添加真菌激发子或已知的植物防御信号分子(例如SA、乙烯、茉莉酸酯、超氧化物和H2 O2),将在拟南芥细胞悬浮培养物中引发防御反应。拟南芥细胞悬浮培养将用于这项研究,因为分子工具可用,并容易在其中的处理可以添加。将通过使用AtMRP表达的序列标签作为探针的斑点印迹分析来跟踪响应于处理的拟南芥MRP(AtMRP)的转录的变化。将使用葡萄糖和GSH缀合物的质子转运活性与AtMRP转录的变化进行比较,并使用来自处理细胞的分离的液泡膜囊泡进行测量。运输活性的这些变化也将与防御反应期间化感物质产生和结合中发生的变化进行比较。如果化感物质的液泡隔离是植物防御反应的一个重要方面,那么化感物质生产和接合的变化应该伴随着液泡运输的变化。这些研究的结果应该提供相当深入的了解液泡隔离化感物质在植物细胞的防御反应的重要性。未来,通过生物技术操纵液泡隔离可能能够增强植物自身的天然防御机制,这在害虫防治方面具有重大的农业意义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Dean其他文献

A new paradigm for medical trainee participation in quality improvement
  • DOI:
    10.7861/fhj.9-2-s102
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Thomas Rollinson;Aklak Choudhury;John Dean
  • 通讯作者:
    John Dean
Consent to medical student teaching: an observational, cross-sectional study exploring the patient view
  • DOI:
    10.1186/s12909-024-06557-x
  • 发表时间:
    2024-12-24
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Niki Newman;Fraser McKenzie;Jonathan M. Wells;Tim Wilkinson;John Dean;Matthew Doogue;Lutz Beckert
  • 通讯作者:
    Lutz Beckert
Prenatal diagnosis for the cystic fibrosis mutation 1717‐1, G→A using arms
使用手臂对囊性纤维化突变 1717-1,G→A 进行产前诊断
  • DOI:
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Z. Miedzybrodzka;K. Kelly;M. Davidson;S. Little;A. E. Shrimptons;John Dean;N. Haites
  • 通讯作者:
    N. Haites
Safety of H1N1 and seasonal influenza vaccines in egg allergic patients in British Columbia
  • DOI:
    10.1186/1710-1492-6-s2-p4
  • 发表时间:
    2010-11-04
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Sara H Leo;John Dean;Edmond S Chan
  • 通讯作者:
    Edmond S Chan
Age and growth of the blacknose shark, Carcharhinus acronotus, in the western North Atlantic Ocean with comments on regional variation in growth rates
  • DOI:
    10.1007/s10641-004-0105-z
  • 发表时间:
    2004-10-01
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    William Driggers;John Carlson;Brian Cullum;John Dean;Doug Oakley
  • 通讯作者:
    Doug Oakley

John Dean的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Dean', 18)}}的其他基金

RUI: Glutathione S-transferase Enzyme(s) and the Conjugation of Plant Phenolics
RUI:谷胱甘肽 S-转移酶和植物酚类化合物的结合
  • 批准号:
    9119296
  • 财政年份:
    1992
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Continuing Grant
Collaborative International Research on the Use of Otolith Microstructure to Estimate the Age and growth of Fish Populations of Mauritius
利用耳石微观结构估算毛里求斯鱼类种群年龄和生长的国际合作研究
  • 批准号:
    8420377
  • 财政年份:
    1985
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Standard Grant

相似国自然基金

特异性氨基酸通过Vacuolar H+-ATPase-mTORC1轴调控脂代谢在修复糖尿病心功能损伤中的作用及机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Analysis of vacuolar transport mechanisms in plant cells
植物细胞液泡运输机制分析
  • 批准号:
    18K06303
  • 财政年份:
    2018
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Functional Analysis of ENTH Proteins in Vacuolar Transport
ENTH 蛋白在液泡运输中的功能分析
  • 批准号:
    281762085
  • 财政年份:
    2015
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Research Grants
Uncovering the molecular basis of biological energy conversion in cells: Proton transport in vacuolar ATPases studied through electron cryomicroscopy and molecular simulations
揭示细胞中生物能量转换的分子基础:通过电子冷冻显微镜和分子模拟研究液泡 ATP 酶中的质子传输
  • 批准号:
    242519
  • 财政年份:
    2011
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Fellowship Programs
Elucidating the Function in Iron Homeostasis and Transport of the VTL Family of Vacuolar Membrane Proteins in Arabidopsis
阐明拟南芥液泡膜蛋白 VTL 家族在铁稳态和运输中的功能
  • 批准号:
    194980302
  • 财政年份:
    2011
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Research Grants
Molecular mechanism of electrogenic carrier- and pump-mediated vacuolar transport
电载体和泵介导的液泡运输的分子机制
  • 批准号:
    76388148
  • 财政年份:
    2008
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Research Units
Analysis of vacuolar sugar transport
液泡糖运输分析
  • 批准号:
    50929665
  • 财政年份:
    2007
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Research Grants
Anterograde and retrograde transport of the plant vacuolar sorting receptor BP80 in vivo
植物液泡分选受体BP80体内的顺行和逆行转运
  • 批准号:
    BB/D016223/1
  • 财政年份:
    2006
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Research Grant
Structural requirements for protein transport across the vacuolar membrane of Plasmodium falciparum
恶性疟原虫液泡膜蛋白质运输的结构要求
  • 批准号:
    5374421
  • 财政年份:
    2002
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Priority Programmes
Subunit structure and ion transport mechanism of vacuolar ATPase
液泡ATP酶亚基结构及离子转运机制
  • 批准号:
    11672158
  • 财政年份:
    1999
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Plant Protein Kinase and A Phosphatidylinositol 3-Kinase Involved in Vacuolar Protein Transport and Development
参与液泡蛋白转运和发育的植物蛋白激酶和磷脂酰肌醇 3-激酶
  • 批准号:
    9630108
  • 财政年份:
    1996
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了