Dynamical Neural Networks for Modeling and Control of Nonlinear Systems

用于非线性系统建模和控制的动态神经网络

基本信息

项目摘要

0115507PourboghratOptimal controller design for nonlinear systems has been the topic of much research in the past years. Although optimal controller design has been completely developed for dynamic linear systems, its nonlinear extension is still a topic of research. A general framework for dynamic optimization is the calculus of variations and the Hamilton-Jacobi-Bellman (HJB) equation. Although these minimization algorithms over the years have found many important applications, the corresponding algorithm usually requires the solution of a two-point boundary value problem, which is not applicable for on-line implementation. Currently, there are several approximating techniques available that can be used for optimal regulator design. These can also be implemented on-line at the price of rendering the control sub-optimal. The problem of optimal tracking controller is even harder, since the approximating techniques, in general, cannot be implemented on-line.This project will attempt to develop a universal optimal controller for a large class of controllable and observable nonlinear systems. The objective of this research is a new generic approach for the design of optimal controllers that can be implemented on-line. The key component for the proposed control architecture is the use of a generic dynamic neural network (DNN). DNNs are shown to be capable of approximating any nonlinear dynamic system with an arbitrary degree of accuracy, provided that they have enough number of neurons. This generic model of the nonlinear system can be utilized for the derivation of the proposed universal controller for optimal tracking problem. The problem of weight adjustment (adaptation) in the network can be viewed as a controller design for an equivalent system. This allows one to formulate the two problems of parameter adaptation and controller design for a system as single problem of controller design.
0115507 Pourboghrat非线性系统的最优控制器设计在过去几年中一直是许多研究的主题。虽然动态线性系统的最优控制器设计已经完全发展,但其非线性扩展仍然是一个研究课题。动态优化的一般框架是变分法和Hamilton-Jacobi-Bellman(HJB)方程。 虽然这些年来的最小化算法已经找到了许多重要的应用,相应的算法通常需要一个两点边值问题的解决方案,这是不适用于在线实现。目前,有几种可用的近似技术可用于最佳调节器设计。这些也可以在线实现,代价是使控制次优。最优跟踪控制器的问题更难,因为近似技术,在一般情况下,不能实现online.This项目将试图开发一个通用的最优控制器的一大类可控和可观的非线性系统。本研究的目的是一个新的通用方法的最优控制器的设计,可以实现在线。所提出的控制架构的关键组成部分是使用一个通用的动态神经网络(DNN)。DNN被证明能够以任意精度逼近任何非线性动态系统,前提是它们具有足够数量的神经元。这个通用模型的非线性系统可以用于推导建议的通用控制器的最优跟踪问题。网络中的权值调整(自适应)问题可以看作是一个等效系统的控制器设计。这使得一个制定两个问题的参数自适应和控制器设计的系统作为一个单一的问题的控制器设计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Farzad Pourboghrat其他文献

Toward the intelligent control of robots

Farzad Pourboghrat的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Rethinking Spiking Neural Networks from a Dynamical System Perspective
职业:从动态系统的角度重新思考尖峰神经网络
  • 批准号:
    2337646
  • 财政年份:
    2024
  • 资助金额:
    $ 22.67万
  • 项目类别:
    Continuing Grant
A Dynamical Systems View On Physics Informed Deep Neural Networks
物理学深度神经网络的动态系统观点
  • 批准号:
    547203-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 22.67万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A Dynamical Systems View On Physics Informed Deep Neural Networks
物理学深度神经网络的动态系统观点
  • 批准号:
    547203-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 22.67万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A Dynamical Systems View On Physics Informed Deep Neural Networks
物理学深度神经网络的动态系统观点
  • 批准号:
    547203-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 22.67万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Using the Mathematics of Inverse Problems and Dynamical Systems to De-mystify Deep Neural Networks (DNNs)
使用反问题和动力系统的数学来揭开深度神经网络 (DNN) 的神秘面纱
  • 批准号:
    542632-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 22.67万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Conference on Modeling Neural Activity: Statistics, Dynamical Systems, and Networks
神经活动建模会议:统计、动力系统和网络
  • 批准号:
    1612914
  • 财政年份:
    2016
  • 资助金额:
    $ 22.67万
  • 项目类别:
    Standard Grant
Modeling Neural Activity: Statistics, Dynamical Systems and Networks
神经活动建模:统计、动力系统和网络
  • 批准号:
    1308462
  • 财政年份:
    2013
  • 资助金额:
    $ 22.67万
  • 项目类别:
    Standard Grant
Constructing theory of dynamical neural networks and its application to dynamic control
动态神经网络的构建理论及其在动态控制中的应用
  • 批准号:
    20700215
  • 财政年份:
    2008
  • 资助金额:
    $ 22.67万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Adaptive Identification and Control of Dynamical Systems Using Neural Networks
使用神经网络的动态系统的自适应识别和控制
  • 批准号:
    0113239
  • 财政年份:
    2001
  • 资助金额:
    $ 22.67万
  • 项目类别:
    Standard Grant
Dynamical impact of signal delay on content-addressable memory of neural networks
信号延迟对神经网络内容寻址存储器的动态影响
  • 批准号:
    230856-2000
  • 财政年份:
    2000
  • 资助金额:
    $ 22.67万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了