Adaptive Identification and Control of Dynamical Systems Using Neural Networks
使用神经网络的动态系统的自适应识别和控制
基本信息
- 批准号:0113239
- 负责人:
- 金额:$ 39.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-01 至 2005-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0113239NarendraThe mathematical difficulties encountered in designing controllers for dynamical systems can be broadly classified under four headings: (i) uncertainty (ii) nonlinearity (iii) complexity, and (iv) time-variations. Adaptive control is the discipline which deals with uncertainty in systems, and the adaptive control of linear systems is currently well understood. The problem of control becomes substantially more complex when the plant characteristics are known but nonlinear, and becomes truly formidable when they are unknown and/or vary with time. All four classes of problems are encountered when neural networks are used to control nonlinear plants.During the past ten years considerable progress has been made in understanding the problems that arise in neurocontrol [1]- [18]. Mathematical modeling, system identification, and synthesis of controllers to track desired output signals have all been extensively studied. The effect of different classes of disturbances have also been investigated, and the methods developed have been applied to a wide class of practical problems. In spite of this, many important questions remain unanswered, and the design of neural controllers remains in many cases more an art than a science.The proposal addresses three fundamental and closely related questions in the adaptive control of nonlinear dynamical systems. The first concerns questions of stability and convergence of neural network based control and deals with both the structure of the controllers and the tools used for proving stability. The second question deals with the important problem of generating optimal control inputs for general classes of nonlinear systems. Such problems are arising with increasing frequency in both well established areas such as process control and aircraft control, as well as new areas such as robotics and space technology. Finally, the third problem deals with the use of multiple models for controlling efficiently nonlinear systems in rapidly varying environments. In all three cases the principal questions are stated, the mathematical difficulties are discussed in detail, and potentially fruitful avenues for research are proposed. It is the opinion of the PI that, in the present state of development of neurocontrol, the three parts of the proposal represent three closely related and important aspects of nonlinear adaptive control using neural networks.
0113239纳伦德拉在设计动态系统控制器时遇到的数学困难可以大致分为四个标题:(i)不确定性(ii)非线性(iii)复杂性和(iv)时变。 自适应控制是一门处理系统中不确定性的学科,线性系统的自适应控制目前已经得到很好的理解。 当被控对象的特性是已知的但非线性的时,控制问题就变得相当复杂;当被控对象的特性是未知的和/或随时间变化时,控制问题就变得相当棘手。 当神经网络用于控制非线性对象时,会遇到所有四类问题。在过去的十年中,在理解神经控制中出现的问题方面取得了相当大的进展[1]- [18]。 数学建模、系统识别和跟踪期望输出信号的控制器的合成都已被广泛研究。 不同类别的干扰的影响也进行了研究,开发的方法已被应用到广泛的一类实际问题。 尽管如此,许多重要的问题仍然没有得到解答,神经控制器的设计在许多情况下仍然是一门艺术,而不是一门科学。该提案解决了非线性动态系统自适应控制中的三个基本和密切相关的问题。 第一个关注的问题的稳定性和收敛性的神经网络控制和处理的控制器的结构和用于证明稳定性的工具。 第二个问题涉及的重要问题,一般类的非线性系统产生最优控制输入。 在诸如过程控制和飞行器控制等成熟的领域以及诸如机器人和空间技术等新领域中,此类问题越来越频繁地出现。 最后,第三个问题涉及在快速变化的环境中使用多个模型来有效地控制非线性系统。 在这三种情况下的主要问题进行了说明,数学上的困难进行了详细讨论,并提出了潜在的富有成效的途径进行研究。 PI认为,在神经控制发展的目前状态下,提案的三个部分代表了使用神经网络的非线性自适应控制的三个密切相关和重要的方面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kumpati Narendra其他文献
Kumpati Narendra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kumpati Narendra', 18)}}的其他基金
Collaborative Research: Mutual Learning: A Systems Theoretic Investigation
协作研究:相互学习:系统理论研究
- 批准号:
1930601 - 财政年份:2019
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
How to adapt efficiently using distributed resources and multiple models to time varing dynamic systems
如何使用分布式资源和多个模型有效地适应时变动态系统
- 批准号:
1503751 - 财政年份:2015
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Collaborative Research: Fast reinforcement learning using multiple models and state decompositions for apllications to Plug-in Hybrid Vehicles
协作研究:使用多个模型和状态分解的快速强化学习在插电式混合动力汽车中的应用
- 批准号:
1408279 - 财政年份:2014
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Adaptive Control Based on the Use of Collective Information from Multiple Models
基于使用多个模型的集体信息的自适应控制
- 批准号:
1102178 - 财政年份:2011
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Adaptive Control of Time-Varying Systems Using Multiple Models
使用多个模型的时变系统的自适应控制
- 批准号:
0824118 - 财政年份:2008
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Adaptive Control of Time-Varying Systems Using Multiple Models
使用多个模型的时变系统的自适应控制
- 批准号:
0601618 - 财政年份:2006
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Stability of Switched Dynamical Systems
切换动力系统的稳定性
- 批准号:
0400306 - 财政年份:2004
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Adaptive Identification and Control of Dynamical Systems Using Neural Networks
使用神经网络的动态系统的自适应识别和控制
- 批准号:
9811390 - 财政年份:1998
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Adaptive Identification and Control of Dynamical Systems Using Neural Networks
使用神经网络的动态系统的自适应识别和控制
- 批准号:
9521405 - 财政年份:1995
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
Adaptive Identification and Control of Dynamical Systems Using Neural Networks
使用神经网络的动态系统的自适应识别和控制
- 批准号:
9203928 - 财政年份:1992
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
相似国自然基金
相似海外基金
Cooperative and Adaptive Mechatronic Systems: Identification, Control, and Optimization
协作和自适应机电系统:识别、控制和优化
- 批准号:
RGPIN-2016-04340 - 财政年份:2021
- 资助金额:
$ 39.99万 - 项目类别:
Discovery Grants Program - Individual
Cooperative and Adaptive Mechatronic Systems: Identification, Control, and Optimization
协作和自适应机电系统:识别、控制和优化
- 批准号:
RGPIN-2016-04340 - 财政年份:2020
- 资助金额:
$ 39.99万 - 项目类别:
Discovery Grants Program - Individual
Cooperative and Adaptive Mechatronic Systems: Identification, Control, and Optimization
协作和自适应机电系统:识别、控制和优化
- 批准号:
RGPIN-2016-04340 - 财政年份:2019
- 资助金额:
$ 39.99万 - 项目类别:
Discovery Grants Program - Individual
Cooperative and Adaptive Mechatronic Systems: Identification, Control, and Optimization
协作和自适应机电系统:识别、控制和优化
- 批准号:
RGPIN-2016-04340 - 财政年份:2018
- 资助金额:
$ 39.99万 - 项目类别:
Discovery Grants Program - Individual
Cooperative and Adaptive Mechatronic Systems: Identification, Control, and Optimization
协作和自适应机电系统:识别、控制和优化
- 批准号:
RGPIN-2016-04340 - 财政年份:2017
- 资助金额:
$ 39.99万 - 项目类别:
Discovery Grants Program - Individual
Cooperative and Adaptive Mechatronic Systems: Identification, Control, and Optimization
协作和自适应机电系统:识别、控制和优化
- 批准号:
RGPIN-2016-04340 - 财政年份:2016
- 资助金额:
$ 39.99万 - 项目类别:
Discovery Grants Program - Individual
Closed loop model identification and adaptive control on paper machines
造纸机闭环模型辨识与自适应控制
- 批准号:
419601-2011 - 财政年份:2014
- 资助金额:
$ 39.99万 - 项目类别:
Collaborative Research and Development Grants
Modeling, Identification, and Control towards Adaptive Personalized Glucose Management for Insulin-Deficient Diabetes
针对胰岛素缺乏型糖尿病的自适应个性化血糖管理的建模、识别和控制
- 批准号:
1200838 - 财政年份:2013
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Closed loop model identification and adaptive control on paper machines
造纸机闭环模型辨识与自适应控制
- 批准号:
419601-2011 - 财政年份:2013
- 资助金额:
$ 39.99万 - 项目类别:
Collaborative Research and Development Grants
Closed loop model identification and adaptive control on paper machines
造纸机闭环模型辨识与自适应控制
- 批准号:
419601-2011 - 财政年份:2012
- 资助金额:
$ 39.99万 - 项目类别:
Collaborative Research and Development Grants