Collaborative Research: A Multilayer Capital Budgeting Model for Comparative Analyses of Infrastructure Networks

协作研究:用于基础设施网络比较分析的多层资本预算模型

基本信息

  • 批准号:
    0116342
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-09-01 至 2004-08-31
  • 项目状态:
    已结题

项目摘要

ABSTRACTProposal: CMS-0116342PI: Srinivas PeetaInstitution: Purdue Research FoundationDate: July 25, 2001Abstract: A Multilayer Capital Budgeting Model for Comparative analyses of Infrastructure NetworksThis project addresses the dynamic capital budgeting problem for large scale, multi-layer infrastructure networks, comprised of transportation networks, water networks, energy networks, telecommunications networks, financial networks, and genera data flow networks.Specifically, the objective of this project is to develop a multi-layer dynamic network capital budgeting model that can be used to quantify the cost savings and efficiency enhancements that might accrue from the coordinated planning and design of infrastructure networks. In the past, infrastructure networks have only been considered in isolation. As such this project is the first step toward developing both a comprehensive theory of infrastructure network design and a new generation of infrastructure decision support systems capable of identifying and promoting synergies among individual network layers.Constraints reflecting physical, financial, economic, and information interdependencies are used to couple network layers. Network activities are further constrained by flow conservation, resource and non-negativity constraints. The state dynamics recognize the alternative gaming behaviors of individual agents active on the various network layers, so that different assumptions regarding the nature of perfect and imperfect economic competition over networks can be considered. The objective is to maximize the present value of net economic benefits. This objective is combined with the aforementioned constraints and state dynamics to create a family of differential games that are formulated as optimal control models. These models can be used to determine the most efficient allocation of infrastructure capital investments over both time and space.The research approach used in this project combines qualitative analysis and nontranditional solution techniques. That is, both classical numerical methods and combined optimization/agent-based simulation (ABS) models are considered. In particular, the differential game model is used to validate the ABS model. A key task in this regard is the investigation of the sensitivity of the model dynamics to parameter values. Although a case study of an actual metropolitan infrastructure system is beyond the scope of this initial research, we will also develop an experimental design for validation of the optimization/ABS model. We will also describe how the model may be used to develop an optimal capacity expansion plan for the infrastructure systems of a medium size city.
建议:CMS-0116342PI:Srinivas Peeta机构:普渡研究基金会日期:2001年7月25日摘要:用于基础设施网络比较分析的多层资本预算模型本项目解决大型、多层基础设施网络的动态资本预算问题,包括交通网络、供水网络、能源网络、电信网络、金融网络和一般数据流网络。具体地说,该项目的目标是开发一个多层动态网络资本预算模型,该模型可用于量化基础设施网络的协调规划和设计可能产生的成本节约和效率提高。在过去,基础设施网络只被孤立地考虑。因此,该项目是朝着发展全面的基础设施网络设计理论和能够识别和促进各个网络层之间协同作用的新一代基础设施决策支持系统的方向迈出的第一步。网络活动进一步受到流守恒、资源约束和非负约束的约束。状态动态识别活跃在不同网络层上的个体代理的可选博弈行为,因此可以考虑关于网络上完美和不完美经济竞争的性质的不同假设。目标是使净经济效益的现值最大化。这一目标与前述约束和状态动力学相结合,创建了一族微分对策,并将其表示为最优控制模型。这些模型可以用来确定基础设施投资在时间和空间上的最有效配置。本项目采用的研究方法结合了定性分析和非传统求解技术。也就是说,既考虑了经典的数值方法,也考虑了组合优化/基于代理的仿真(ABS)模型。特别是利用微分博弈模型对ABS模型进行了验证。这方面的一项关键任务是研究模型动力学对参数值的敏感性。虽然一个实际的大都市基础设施系统的案例研究超出了最初研究的范围,但我们也将开发一个实验设计来验证优化/ABS模型。我们还将描述如何使用该模型来为中等规模城市的基础设施系统制定最优容量扩展计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Srinivas Peeta其他文献

A sliding mode controller for vehicular traffic flow
一种车辆交通流滑模控制器
  • DOI:
    10.1016/j.physa.2016.06.053
  • 发表时间:
    2016-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Srinivas Peeta;Li Zhang;Taixong Zheng;Yinguo Li
  • 通讯作者:
    Yinguo Li
Combined multinomial logit modal split and paired combinatorial logit traffic assignment model
  • DOI:
    doi.org/10.1080/23249935.2018.1431701
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
  • 作者:
    Jian Wang;Srinivas Peeta;Xiaozheng He;Jinbao Zhao
  • 通讯作者:
    Jinbao Zhao
Evaluating the Effects of Switching Period of Communication Topologies and Delays on Electric Connected Vehicles Stream With Car-Following Theory
利用跟驰理论评估通信拓扑切换周期和延迟对电动车流的影响
Long Short-Term Memory-Based Human-Driven Vehicle Longitudinal Trajectory Prediction in a Connected and Autonomous Vehicle Environment
联网和自主车辆环境中基于长短期记忆的人类驾驶车辆纵向轨迹预测
Integral-Sliding-Mode Braking Control for a Connected Vehicle Platoon: Theory and Application
联网车辆队列的整体滑模制动控制:理论与应用

Srinivas Peeta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Srinivas Peeta', 18)}}的其他基金

SCC-IRG Track 1: Fostering Smart and Sustainable Travel through Engaged Communities using Integrated Multidimensional Information-Based Solutions
SCC-IRG 第 1 轨道:使用基于信息的集成多维解决方案通过参与社区促进智能和可持续旅行
  • 批准号:
    2125390
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Statistical Learning, Driving Simulator-Based Modeling, and Computationally Tractable Dynamic Traffic Assignment
合作研究:统计学习、基于驾驶模拟器的建模以及计算可处理的动态交通分配
  • 批准号:
    1907563
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical Learning, Driving Simulator-Based Modeling, and Computationally Tractable Dynamic Traffic Assignment
合作研究:统计学习、基于驾驶模拟器的建模以及计算可处理的动态交通分配
  • 批准号:
    1662692
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Coordinated Real-Time Traffic Management based on Dynamic Information Propagation and Aggregation under Connected Vehicle Systems
协作研究:车联网系统下基于动态信息传播和聚合的协同实时交通管理
  • 批准号:
    1435866
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Stochastic Sensing Control Models for Safe and Efficient Traffic Signal Strategies
合作研究:安全高效交通信号策略的随机传感控制模型
  • 批准号:
    0528225
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CAREER: Efficient and Robust On-Line Control of Large-Scale Dynamic Traffic Systems with Information Systems
职业:利用信息系统对大规模动态交通系统进行高效、鲁棒的在线控制
  • 批准号:
    9702612
  • 财政年份:
    1997
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

RUI: Collaborative Research: CDS&E: A Modular Multilayer Framework for Real-Time Hyperspectral Image Segmentation
RUI:合作研究:CDS
  • 批准号:
    2411519
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Process and consequences of social partner choice revealed by multilayer network analysis
合作研究:多层网络分析揭示社会伙伴选择的过程和后果
  • 批准号:
    2134910
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Process and consequences of social partner choice revealed by multilayer network analysis
合作研究:多层网络分析揭示社会伙伴选择的过程和后果
  • 批准号:
    2134911
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Highly ordered concentric multilayer nanostructures with probable liquid crystalline features from rigid sphere-rod amphiphiles in solution
合作研究:溶液中刚性球棒两亲物具有可能液晶特征的高度有序同心多层纳米结构
  • 批准号:
    2215190
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Highly ordered concentric multilayer nanostructures with probable liquid crystalline features from rigid sphere-rod amphiphiles in solution
合作研究:溶液中刚性球棒两亲物具有可能液晶特征的高度有序同心多层纳米结构
  • 批准号:
    2215191
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: Planning: A Multilayer Network (MLN) Community Infrastructure for Data,Interaction,Visualization, and softwarE(MLN-DIVE)
合作研究:CCRI:规划:数据、交互、可视化和软件的多层网络 (MLN) 社区基础设施 (MLN-DIVE)
  • 批准号:
    2120414
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: MIM: Using multilayer interaction networks to predict microbiome assembly and function
合作研究:MIM:使用多层交互网络来预测微生物组的组装和功能
  • 批准号:
    2124903
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: Planning: A Multilayer Network (MLN) Community Infrastructure for Data, Interaction, Visualization, and Software (MLN-DIVE)
合作研究:CCRI:规划:数据、交互、可视化和软件的多层网络 (MLN) 社区基础设施 (MLN-DIVE)
  • 批准号:
    2120361
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: Planning: A Multilayer Network (MLN) Community Infrastructure for Data, Interaction, Visualization, and softwarE (MLN-DIVE)
合作研究:CCRI:规划:数据、交互、可视化和软件的多层网络 (MLN) 社区基础设施 (MLN-DIVE)
  • 批准号:
    2120393
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: MIM: Using multilayer interaction networks to predict microbiome assembly and function
合作研究:MIM:使用多层交互网络来预测微生物组的组装和功能
  • 批准号:
    2124800
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了