Efficient Algorithms for Lossless Data and Image Compression

无损数据和图像压缩的高效算法

基本信息

  • 批准号:
    0122293
  • 负责人:
  • 金额:
    $ 8.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-01 至 2003-06-30
  • 项目状态:
    已结题

项目摘要

Proposal 122293U of Ill Urbana-ChampaignPI: Bresler, YoramIn spite of the focus in recent years on lossy compression of audio, images, and video, lossless data compression remains crucial in applications such as text files, facsimiles, software executables, andmedical imaging. Universal source coding algorithms, which deal with sources whose statistics are unknown, are of particular importance. Universal coding methods are designed for universal performance over a broad class of possible sources. In these methods the source parameters are estimated, either implicitly or explicitly, and the sequence itself is encoded accordingly. Therefore the coding length for universal methods is g eater than the entropy; the extra coding length, called the redundancy satisfies a fundamental lower bound by Rissanen. The focus of research in universal data compression has been on reducing redundancies. In this sense, context tree weighting (CTW) has achieved the ultimate goal for the important class of tree sources, because ithas essentially achieved Rissanen 's bound. However, in addition to low redundancies, a universal coding method must be computationally fast, and consume little memory. Neither of the two leading methods, CTW orPPM, a compression method that has been fine-tuned by various heuristics for practical use, are particularly strong performers in these respects. Therefore, the main goal of the proposed research is to develop algorithms featuring fast computation and low memory use, while providing compression near Rissanen 's bound. Like some of the most efficient high-performance universal compression algorithms to-date, the proposed approach is based on the Burrows Wheeler transform (BWT). The BWT is an invertible transform whose output contains segments in which symbols are approximately independent identically distributed. Owing to this similarity to piecewise i.i.d. (PIID), compressing the BWT output using PIID methods yields goodcompression results. However, such methods cannot achieve universal coding redundancies close to Rissanen 's bound because they require (whether implicitly or Explicitly) extra bits to encode the positions oftransitions between segments in the BWT output. Recognizing this hidden overhead, this project proposes to take a fresh look at BWT based-methods and the relationship to the fundamental redundancy bounds.The project will explore ways to close the gap between traditional BWT-based methods and Rissanen 's bound while retaining the computational efficiency of the BWT. A particular challenge will be to apply this approach to lossless image compression. The resulting algorithms will have linear complexity, and be better than any current algorithm with comparable asymptotic compression performance, in terms of computation and/or memory use. Some versions of these algorithms will also have simple structure, admitting fast hardware implementations. Furthermore, this research will reveal the role of context modeling in universal lossless image compression. Since near-Rissanen redundancies with linear complexity are hard to beat, we expect a shift in the universal coding literature from compression improvement to implementation and practicality.
Ill Urbana-ChampaignPI:Bresler,Yoram的提案122293 U尽管近年来关注音频、图像和视频的有损压缩,但无损数据压缩在文本文件、传真、软件可执行文件和医学成像等应用中仍然至关重要。通用信源编码算法,它处理统计信息未知的信源,是特别重要的。 通用编码方法被设计用于在广泛类别的可能源上的通用性能。在这些方法中,源参数被隐式地或显式地估计,并且序列本身被相应地编码。因此,通用方法的编码长度大于熵;额外的编码长度,称为冗余,满足Rissanen的基本下限。通用数据压缩的研究重点是减少冗余。从这个意义上说,上下文树加权(CTW)实现了对重要树类源的最终目标,因为它本质上达到了Rissanen界。然而,除了低冗余之外,通用编码方法必须在计算上快速,并且消耗很少的存储器。CTW和PPM这两种主要的压缩方法都不是在这些方面表现得特别好。 因此,所提出的研究的主要目标是开发具有快速计算和低内存使用的算法,同时提供接近Rissanen界限的压缩。像一些最有效的高性能的通用压缩算法的日期,所提出的方法是基于伯罗斯惠勒变换(BWT)。BWT是一种可逆变换,其输出包含符号近似独立同分布的段。由于与分段i.i.d.的相似性(PIID),使用PIID方法压缩BWT输出产生良好的压缩结果。然而,这样的方法不能实现接近Rissanen界限的通用编码冗余,因为它们需要(无论是隐式地还是显式地)额外的比特来编码BWT输出中的段之间的转换的位置。 认识到这一隐藏的开销,本项目建议重新审视基于BWT的方法及其与基本冗余界限的关系。该项目将探索如何在保持BWT的计算效率的同时,缩小传统基于BWT的方法与Rissanen界限之间的差距。一个特殊的挑战将是将这种方法应用于无损图像压缩。所得到的算法将具有线性复杂度,并且在计算和/或存储器使用方面优于具有可比渐近压缩性能的任何当前算法。这些算法的一些版本也将具有简单的结构,允许快速的硬件实现。此外,本研究将揭示上下文建模在通用无损图像压缩中的作用。由于线性复杂度的近Rissanen冗余很难被击败,我们预计通用编码文献将从压缩改进转向实现和实用性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yoram Bresler其他文献

Yoram Bresler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yoram Bresler', 18)}}的其他基金

BIGDATA: F: DKA: CSD: DKM: Theory and Algorithms for Processing Data with Sparse and Multilinear Structure
BIGDATA:F:DKA:CSD:DKM:稀疏和多线性结构数据处理的理论和算法
  • 批准号:
    1447879
  • 财政年份:
    2014
  • 资助金额:
    $ 8.29万
  • 项目类别:
    Standard Grant
CIF: Small: Theory and Algorithms for Scalable Learning of Sparse Representations
CIF:小:稀疏表示的可扩展学习的理论和算法
  • 批准号:
    1320953
  • 财政年份:
    2013
  • 资助金额:
    $ 8.29万
  • 项目类别:
    Standard Grant
CIF: Small: Dictionary Learning for Compressed Sensing
CIF:小:压缩感知的字典学习
  • 批准号:
    1018660
  • 财政年份:
    2010
  • 资助金额:
    $ 8.29万
  • 项目类别:
    Standard Grant
CIF: Small: Blind Perfect Signal Reconstruction in Subsampled Multi-Channel Systems
CIF:小:子采样多通道系统中的盲完美信号重建
  • 批准号:
    1018789
  • 财政年份:
    2010
  • 资助金额:
    $ 8.29万
  • 项目类别:
    Standard Grant
Practical Compressed Sensing
实用压缩感知
  • 批准号:
    0635234
  • 财政年份:
    2006
  • 资助金额:
    $ 8.29万
  • 项目类别:
    Standard Grant
Fast Algorithms for 3D Cone-Beam Tomography
3D 锥形束层析成像的快速算法
  • 批准号:
    0209203
  • 财政年份:
    2002
  • 资助金额:
    $ 8.29万
  • 项目类别:
    Continuing Grant
Minimum Redundancy Spatiotemporal MRI
最小冗余时空 MRI
  • 批准号:
    0201876
  • 财政年份:
    2002
  • 资助金额:
    $ 8.29万
  • 项目类别:
    Standard Grant
Fast Algorithms for Tomography
断层扫描快速算法
  • 批准号:
    9972980
  • 财政年份:
    1999
  • 资助金额:
    $ 8.29万
  • 项目类别:
    Standard Grant
Performance Bounds on Image and Video Compression
图像和视频压缩的性能限制
  • 批准号:
    9707633
  • 财政年份:
    1997
  • 资助金额:
    $ 8.29万
  • 项目类别:
    Continuing Grant
PYI: Statistical Techniques in Inverse Problems
PYI:反问题中的统计技术
  • 批准号:
    9157377
  • 财政年份:
    1991
  • 资助金额:
    $ 8.29万
  • 项目类别:
    Continuing Grant

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.29万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 8.29万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 8.29万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 8.29万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 8.29万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 8.29万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 8.29万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 8.29万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 8.29万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 8.29万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了