Fast Algorithms for Tomography
断层扫描快速算法
基本信息
- 批准号:9972980
- 负责人:
- 金额:$ 19.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-09-15 至 2003-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
FAST ALGORITHMS FOR TOMOGRAPHYPI: Yoram BreslerTomography, or the reconstruction of an object from a collection of its line integrals from various directions (known as its Radon transform) is a well-studied problem. Perhaps most importantly, it is the principle underlying most of the key diagnostic imaging modalities including x-ray Tomography (CT), PET and SPECT, certain forms of MRI, and emerging techniques such as electrical impedance tomography (EIT) and optical tomography. Tomography is also the fundamental principle in numerous other problems and applications in science and engineering -- from electron microscopy of subcellular structures and nondestructive evaluation (NDE) in manufacturing, through geophysical exploration and environmental monitoring, to remote sensing by synthetic aperture radar (SAR). The most widely used technique for solving the tomographic problem is known as Filtered Backprojection (FBP), and is ubiquitous in the realm of medical x-ray CT. But the FBP method is slow, and new technologies are making data acquisition possible at rates that cannot be handled by the FBP method and existing computer technology. This research involves new ways of solving the tomography problem that use a very small fraction of the effort required by the FBP.The investigator is studying a number of promising techniques for accelerating the FBP reconstruction algorithm. He has discovered that the Radon transform can be factored in a special way, and that this new factorization leads to an O(N^2 log N) method (for reconstructing an N X N image from N projections) for solving the tomographic problems, as opposed to the FBP method, which is an O(N^3) method. For large N, as are typically encountered in third or fourth generation x-ray CT systems, this represents a speedup of nearly two orders of magnitude. This research also involves the use of this factorization to accelerate solutions to more complicated tomographic problems, in which data are missing or distorted.
快速层析成像算法:Yoram BreslerTomography,或从各个方向的线积分集合(称为Radon变换)重建物体是一个研究得很好的问题。 也许最重要的是,它是大多数关键诊断成像模式的基础原理,包括X射线断层扫描(CT),PET和SPECT,某些形式的MRI,以及新兴技术,如电阻抗断层扫描(EIT)和光学断层扫描。 层析成像也是许多其他问题的基本原理和应用在科学和工程-从电子显微镜的亚细胞结构和无损评价(NDE)在制造业,通过地球物理勘探和环境监测,遥感合成孔径雷达(SAR)。 用于解决层析成像问题的最广泛使用的技术被称为滤波反投影(FBP),并且在医学X射线CT领域中无处不在。但是,FBP方法是缓慢的,新技术使数据采集的速度,不能处理的FBP方法和现有的计算机技术成为可能。 这项研究涉及到新的方法来解决断层扫描问题,使用一个非常小的分数所需的努力,由FBP.The调查员正在研究一些有前途的技术,加快FBP重建算法。 他发现Radon变换可以用一种特殊的方式分解,这种新的分解导致了O(N^2 log N)的方法(用于从N个投影重建N X N图像)来解决层析成像问题,而FBP方法是O(N^3)的方法。 对于大的N,如在第三代或第四代X射线CT系统中通常遇到的,这表示接近两个数量级的加速。 这项研究还涉及使用这种分解,以加速解决更复杂的断层扫描问题,其中数据丢失或失真。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yoram Bresler其他文献
Yoram Bresler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yoram Bresler', 18)}}的其他基金
BIGDATA: F: DKA: CSD: DKM: Theory and Algorithms for Processing Data with Sparse and Multilinear Structure
BIGDATA:F:DKA:CSD:DKM:稀疏和多线性结构数据处理的理论和算法
- 批准号:
1447879 - 财政年份:2014
- 资助金额:
$ 19.81万 - 项目类别:
Standard Grant
CIF: Small: Theory and Algorithms for Scalable Learning of Sparse Representations
CIF:小:稀疏表示的可扩展学习的理论和算法
- 批准号:
1320953 - 财政年份:2013
- 资助金额:
$ 19.81万 - 项目类别:
Standard Grant
CIF: Small: Dictionary Learning for Compressed Sensing
CIF:小:压缩感知的字典学习
- 批准号:
1018660 - 财政年份:2010
- 资助金额:
$ 19.81万 - 项目类别:
Standard Grant
CIF: Small: Blind Perfect Signal Reconstruction in Subsampled Multi-Channel Systems
CIF:小:子采样多通道系统中的盲完美信号重建
- 批准号:
1018789 - 财政年份:2010
- 资助金额:
$ 19.81万 - 项目类别:
Standard Grant
Fast Algorithms for 3D Cone-Beam Tomography
3D 锥形束层析成像的快速算法
- 批准号:
0209203 - 财政年份:2002
- 资助金额:
$ 19.81万 - 项目类别:
Continuing Grant
Minimum Redundancy Spatiotemporal MRI
最小冗余时空 MRI
- 批准号:
0201876 - 财政年份:2002
- 资助金额:
$ 19.81万 - 项目类别:
Standard Grant
Efficient Algorithms for Lossless Data and Image Compression
无损数据和图像压缩的高效算法
- 批准号:
0122293 - 财政年份:2001
- 资助金额:
$ 19.81万 - 项目类别:
Standard Grant
Performance Bounds on Image and Video Compression
图像和视频压缩的性能限制
- 批准号:
9707633 - 财政年份:1997
- 资助金额:
$ 19.81万 - 项目类别:
Continuing Grant
PYI: Statistical Techniques in Inverse Problems
PYI:反问题中的统计技术
- 批准号:
9157377 - 财政年份:1991
- 资助金额:
$ 19.81万 - 项目类别:
Continuing Grant
相似海外基金
How low-dose positron emission tomography is impacted by machine learning algorithms
机器学习算法如何影响低剂量正电子发射断层扫描
- 批准号:
567046-2021 - 财政年份:2021
- 资助金额:
$ 19.81万 - 项目类别:
University Undergraduate Student Research Awards
Bridging the Mathematical Analysis and Reconstruction Algorithms for Transmission and Reflection Seismic Tomography
连接传输和反射地震层析成像的数学分析和重建算法
- 批准号:
2109116 - 财政年份:2021
- 资助金额:
$ 19.81万 - 项目类别:
Standard Grant
Implementation of Deep Learning Algorithms for Analysis of Optical Coherence Tomography Angiography
用于光学相干断层扫描血管造影分析的深度学习算法的实现
- 批准号:
541089-2019 - 财政年份:2019
- 资助金额:
$ 19.81万 - 项目类别:
University Undergraduate Student Research Awards
Novel Resolution Analysis of Reconstruction Algorithms in Tomography
断层扫描重建算法的新颖分辨率分析
- 批准号:
1906361 - 财政年份:2019
- 资助金额:
$ 19.81万 - 项目类别:
Standard Grant
Enhancing the performance of an electrical tomography based multi-phase flow meter using machine learning algorithms
使用机器学习算法增强基于电断层扫描的多相流量计的性能
- 批准号:
105614 - 财政年份:2019
- 资助金额:
$ 19.81万 - 项目类别:
Collaborative R&D
Optimizing Weights in Iterative Image Reconstruction Algorithms Applied to Optical Computed Tomography Imaging
优化应用于光学计算机断层扫描成像的迭代图像重建算法中的权重
- 批准号:
542768-2019 - 财政年份:2019
- 资助金额:
$ 19.81万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2019
- 资助金额:
$ 19.81万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2018
- 资助金额:
$ 19.81万 - 项目类别:
Discovery Grants Program - Individual
EAGER: Development of 3D Second Harmonic Generation Tomography and Deep Learning Algorithms for Classification of Human Ovarian Cancer
EAGER:开发用于人类卵巢癌分类的 3D 二次谐波生成断层扫描和深度学习算法
- 批准号:
1830964 - 财政年份:2018
- 资助金额:
$ 19.81万 - 项目类别:
Standard Grant
Ultrafast optical coherence tomography algorithms for real-time processing**********
用于实时处理的超快光学相干断层扫描算法************
- 批准号:
537241-2018 - 财政年份:2018
- 资助金额:
$ 19.81万 - 项目类别:
Engage Grants Program